JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGMatrix33 Class Reference

Detailed Description

Handles matrix math operations.

Author
Tony Peden, Jon Berndt, Mathias Froelich

Definition at line 69 of file FGMatrix33.h.

#include <FGMatrix33.h>

Public Types

enum  { eRows = 3 , eColumns = 3 }
 

Public Member Functions

 FGMatrix33 (const double m11, const double m12, const double m13, const double m21, const double m22, const double m23, const double m31, const double m32, const double m33)
 Initialization by given values.
 
 FGMatrix33 (const FGMatrix33 &M)
 Copy constructor.
 
 FGMatrix33 (void)
 Default initializer.
 
 ~FGMatrix33 (void)
 Destructor.
 
unsigned int Cols (void) const
 Number of cloumns in the matrix.
 
double Determinant (void) const
 Determinant of the matrix.
 
std::string Dump (const std::string &delimeter) const
 Prints the contents of the matrix.
 
std::string Dump (const std::string &delimiter, const std::string &prefix) const
 Prints the contents of the matrix.
 
double & Entry (unsigned int row, unsigned int col)
 Write access the entries of the matrix.
 
double Entry (unsigned int row, unsigned int col) const
 Read access the entries of the matrix.
 
FGColumnVector3 GetEuler () const
 Returns the Euler angle column vector associated with this matrix.
 
FGQuaternion GetQuaternion (void) const
 Returns the quaternion associated with this direction cosine (rotation) matrix.
 
void InitMatrix (const double m11, const double m12, const double m13, const double m21, const double m22, const double m23, const double m31, const double m32, const double m33)
 Initialize the matrix.
 
void InitMatrix (void)
 Initialize the matrix.
 
FGMatrix33 Inverse (void) const
 Return the inverse of the matrix.
 
bool Invertible (void) const
 Return if the matrix is invertible.
 
double & operator() (unsigned int row, unsigned int col)
 Write access the entries of the matrix.
 
double operator() (unsigned int row, unsigned int col) const
 Read access the entries of the matrix.
 
FGMatrix33 operator* (const double scalar) const
 Multiply the matrix with a scalar.
 
FGColumnVector3 operator* (const FGColumnVector3 &v) const
 Matrix vector multiplication.
 
FGMatrix33 operator* (const FGMatrix33 &B) const
 Matrix product.
 
FGMatrix33operator*= (const double scalar)
 In place matrix scale.
 
FGMatrix33operator*= (const FGMatrix33 &B)
 In place matrix multiplication.
 
FGMatrix33 operator+ (const FGMatrix33 &B) const
 Matrix addition.
 
FGMatrix33operator+= (const FGMatrix33 &B)
 In place matrix addition.
 
FGMatrix33 operator- (const FGMatrix33 &B) const
 Matrix subtraction.
 
FGMatrix33operator-= (const FGMatrix33 &B)
 In place matrix subtraction.
 
FGMatrix33 operator/ (const double scalar) const
 Multiply the matrix with 1.0/scalar.
 
FGMatrix33operator/= (const double scalar)
 In place matrix scale.
 
FGMatrix33operator= (const FGMatrix33 &A)
 Assignment operator.
 
FGMatrix33operator= (std::initializer_list< double > lv)
 Assignment operator.
 
unsigned int Rows (void) const
 Number of rows in the matrix.
 
void T (void)
 Transposes this matrix.
 
FGMatrix33 Transposed (void) const
 Transposed matrix.
 

Member Enumeration Documentation

◆ anonymous enum

anonymous enum

Definition at line 73 of file FGMatrix33.h.

73 {
74 eRows = 3,
75 eColumns = 3
76 };

Constructor & Destructor Documentation

◆ FGMatrix33() [1/3]

FGMatrix33 ( void  )

Default initializer.

Create a zero matrix.

Definition at line 58 of file FGMatrix33.cpp.

59{
60 data[0] = data[1] = data[2] = data[3] = data[4] = data[5] =
61 data[6] = data[7] = data[8] = 0.0;
62}
+ Here is the caller graph for this function:

◆ FGMatrix33() [2/3]

FGMatrix33 ( const FGMatrix33 M)
inline

Copy constructor.

Parameters
MMatrix which is used for initialization.

Create copy of the matrix given in the argument.

Definition at line 90 of file FGMatrix33.h.

91 {
92 data[0] = M.data[0];
93 data[1] = M.data[1];
94 data[2] = M.data[2];
95 data[3] = M.data[3];
96 data[4] = M.data[4];
97 data[5] = M.data[5];
98 data[6] = M.data[6];
99 data[7] = M.data[7];
100 data[8] = M.data[8];
101 }

◆ FGMatrix33() [3/3]

FGMatrix33 ( const double  m11,
const double  m12,
const double  m13,
const double  m21,
const double  m22,
const double  m23,
const double  m31,
const double  m32,
const double  m33 
)
inline

Initialization by given values.

Parameters
m11value of the 1,1 Matrix element.
m12value of the 1,2 Matrix element.
m13value of the 1,3 Matrix element.
m21value of the 2,1 Matrix element.
m22value of the 2,2 Matrix element.
m23value of the 2,3 Matrix element.
m31value of the 3,1 Matrix element.
m32value of the 3,2 Matrix element.
m33value of the 3,3 Matrix element.

Create a matrix from the doubles given in the arguments.

Definition at line 117 of file FGMatrix33.h.

120 {
121 data[0] = m11;
122 data[1] = m21;
123 data[2] = m31;
124 data[3] = m12;
125 data[4] = m22;
126 data[5] = m32;
127 data[6] = m13;
128 data[7] = m23;
129 data[8] = m33;
130 }

◆ ~FGMatrix33()

~FGMatrix33 ( void  )
inline

Destructor.

Definition at line 134 of file FGMatrix33.h.

134{}

Member Function Documentation

◆ Cols()

unsigned int Cols ( void  ) const
inline

Number of cloumns in the matrix.

Returns
the number of columns in the matrix.

Definition at line 214 of file FGMatrix33.h.

214{ return eColumns; }

◆ Determinant()

double Determinant ( void  ) const

Determinant of the matrix.

Returns
the determinant of the matrix.

Definition at line 221 of file FGMatrix33.cpp.

221 {
222 return data[0]*data[4]*data[8] + data[3]*data[7]*data[2]
223 + data[6]*data[1]*data[5] - data[6]*data[4]*data[2]
224 - data[3]*data[1]*data[8] - data[7]*data[5]*data[0];
225}
+ Here is the caller graph for this function:

◆ Dump() [1/2]

string Dump ( const std::string &  delimeter) const

Prints the contents of the matrix.

Parameters
delimeterthe item separator (tab or comma)
Returns
a string with the delimeter-separated contents of the matrix

Definition at line 66 of file FGMatrix33.cpp.

67{
68 ostringstream buffer;
69 buffer << setw(12) << setprecision(10) << data[0] << delimiter;
70 buffer << setw(12) << setprecision(10) << data[3] << delimiter;
71 buffer << setw(12) << setprecision(10) << data[6] << delimiter;
72 buffer << setw(12) << setprecision(10) << data[1] << delimiter;
73 buffer << setw(12) << setprecision(10) << data[4] << delimiter;
74 buffer << setw(12) << setprecision(10) << data[7] << delimiter;
75 buffer << setw(12) << setprecision(10) << data[2] << delimiter;
76 buffer << setw(12) << setprecision(10) << data[5] << delimiter;
77 buffer << setw(12) << setprecision(10) << data[8];
78 return buffer.str();
79}

◆ Dump() [2/2]

string Dump ( const std::string &  delimiter,
const std::string &  prefix 
) const

Prints the contents of the matrix.

Parameters
delimeterthe item separator (tab or comma, etc.)
prefixan additional prefix that is used to indent the 3X3 matrix printout
Returns
a string with the delimeter-separated contents of the matrix

Definition at line 83 of file FGMatrix33.cpp.

84{
85 ostringstream buffer;
86
87 buffer << prefix << right << fixed << setw(9) << setprecision(6) << data[0] << delimiter;
88 buffer << right << fixed << setw(9) << setprecision(6) << data[3] << delimiter;
89 buffer << right << fixed << setw(9) << setprecision(6) << data[6] << endl;
90
91 buffer << prefix << right << fixed << setw(9) << setprecision(6) << data[1] << delimiter;
92 buffer << right << fixed << setw(9) << setprecision(6) << data[4] << delimiter;
93 buffer << right << fixed << setw(9) << setprecision(6) << data[7] << endl;
94
95 buffer << prefix << right << fixed << setw(9) << setprecision(6) << data[2] << delimiter;
96 buffer << right << fixed << setw(9) << setprecision(6) << data[5] << delimiter;
97 buffer << right << fixed << setw(9) << setprecision(6) << data[8];
98
99 buffer << setw(0) << left;
100
101 return buffer.str();
102}

◆ Entry() [1/2]

double & Entry ( unsigned int  row,
unsigned int  col 
)
inline

Write access the entries of the matrix.

This function is just a shortcut for the double& operator()(unsigned int row, unsigned int col) function. It is used internally to access the elements in a more convenient way.

Note that the indices given in the arguments are unchecked.

Parameters
rowRow index.
colColumn index.
Returns
a reference to the matrix entry at the given row and column indices. Indices are counted starting with 1.

Definition at line 202 of file FGMatrix33.h.

202 {
203 return data[(col-1)*eRows+row-1];
204 }

◆ Entry() [2/2]

double Entry ( unsigned int  row,
unsigned int  col 
) const
inline

Read access the entries of the matrix.

This function is just a shortcut for the double& operator()(unsigned int row, unsigned int col) function. It is used internally to access the elements in a more convenient way.

Note that the indices given in the arguments are unchecked.

Parameters
rowRow index.
colColumn index.
Returns
the value of the matrix entry at the given row and column indices. Indices are counted starting with 1.

Definition at line 185 of file FGMatrix33.h.

185 {
186 return data[(col-1)*eRows+row-1];
187 }

◆ GetEuler()

FGColumnVector3 GetEuler ( void  ) const

Returns the Euler angle column vector associated with this matrix.

Definition at line 159 of file FGMatrix33.cpp.

160{
161 FGColumnVector3 mEulerAngles;
162 bool GimbalLock = false;
163
164 if (data[6] <= -1.0) {
165 mEulerAngles(2) = 0.5*M_PI;
166 GimbalLock = true;
167 }
168 else if (1.0 <= data[6]) {
169 mEulerAngles(2) = -0.5*M_PI;
170 GimbalLock = true;
171 }
172 else
173 mEulerAngles(2) = asin(-data[6]);
174
175 if (GimbalLock)
176 mEulerAngles(1) = atan2(-data[5], data[4]);
177 else
178 mEulerAngles(1) = atan2(data[7], data[8]);
179
180 if (GimbalLock)
181 mEulerAngles(3) = 0.0;
182 else {
183 double psi = atan2(data[3], data[0]);
184 if (psi < 0.0)
185 psi += 2*M_PI;
186 mEulerAngles(3) = psi;
187 }
188
189 return mEulerAngles;
190}

◆ GetQuaternion()

FGQuaternion GetQuaternion ( void  ) const

Returns the quaternion associated with this direction cosine (rotation) matrix.

Definition at line 106 of file FGMatrix33.cpp.

107{
108 FGQuaternion Q;
109
110 double tempQ[4];
111 int idx;
112
113 tempQ[0] = 1.0 + data[0] + data[4] + data[8];
114 tempQ[1] = 1.0 + data[0] - data[4] - data[8];
115 tempQ[2] = 1.0 - data[0] + data[4] - data[8];
116 tempQ[3] = 1.0 - data[0] - data[4] + data[8];
117
118 // Find largest of the above
119 idx = 0;
120 for (int i=1; i<4; i++) if (tempQ[i] > tempQ[idx]) idx = i;
121
122 switch(idx) {
123 case 0:
124 Q(1) = 0.50*sqrt(tempQ[0]);
125 Q(2) = 0.25*(data[7] - data[5])/Q(1);
126 Q(3) = 0.25*(data[2] - data[6])/Q(1);
127 Q(4) = 0.25*(data[3] - data[1])/Q(1);
128 break;
129 case 1:
130 Q(2) = 0.50*sqrt(tempQ[1]);
131 Q(1) = 0.25*(data[7] - data[5])/Q(2);
132 Q(3) = 0.25*(data[3] + data[1])/Q(2);
133 Q(4) = 0.25*(data[2] + data[6])/Q(2);
134 break;
135 case 2:
136 Q(3) = 0.50*sqrt(tempQ[2]);
137 Q(1) = 0.25*(data[2] - data[6])/Q(3);
138 Q(2) = 0.25*(data[3] + data[1])/Q(3);
139 Q(4) = 0.25*(data[7] + data[5])/Q(3);
140 break;
141 case 3:
142 Q(4) = 0.50*sqrt(tempQ[3]);
143 Q(1) = 0.25*(data[3] - data[1])/Q(4);
144 Q(2) = 0.25*(data[6] + data[2])/Q(4);
145 Q(3) = 0.25*(data[7] + data[5])/Q(4);
146 break;
147 default:
148 //error
149 break;
150 }
151
152 return (Q);
153}
+ Here is the caller graph for this function:

◆ InitMatrix() [1/2]

void InitMatrix ( const double  m11,
const double  m12,
const double  m13,
const double  m21,
const double  m22,
const double  m23,
const double  m31,
const double  m32,
const double  m33 
)
inline

Initialize the matrix.

This function initializes a matrix to user specified values.

Definition at line 240 of file FGMatrix33.h.

243 {
244 data[0] = m11;
245 data[1] = m21;
246 data[2] = m31;
247 data[3] = m12;
248 data[4] = m22;
249 data[5] = m32;
250 data[6] = m13;
251 data[7] = m23;
252 data[8] = m33;
253 }

◆ InitMatrix() [2/2]

void InitMatrix ( void  )

Initialize the matrix.

This function initializes a matrix to all 0.0.

Definition at line 259 of file FGMatrix33.cpp.

260{
261 data[0] = data[1] = data[2] = data[3] = data[4] = data[5] =
262 data[6] = data[7] = data[8] = 0.0;
263}
+ Here is the caller graph for this function:

◆ Inverse()

FGMatrix33 Inverse ( void  ) const

Return the inverse of the matrix.

Computes and returns if the inverse of the matrix. It is computed by Cramers Rule. Also there are no checks performed if the matrix is invertible. If you are not sure that it really is check this with the Invertible() call before.

Definition at line 229 of file FGMatrix33.cpp.

229 {
230 // Compute the inverse of a general matrix using Cramers rule.
231 // I guess googling for cramers rule gives tons of references
232 // for this. :)
233
234 if (Determinant() != 0.0) {
235 double rdet = 1.0/Determinant();
236
237 double i11 = rdet*(data[4]*data[8]-data[7]*data[5]);
238 double i21 = rdet*(data[7]*data[2]-data[1]*data[8]);
239 double i31 = rdet*(data[1]*data[5]-data[4]*data[2]);
240 double i12 = rdet*(data[6]*data[5]-data[3]*data[8]);
241 double i22 = rdet*(data[0]*data[8]-data[6]*data[2]);
242 double i32 = rdet*(data[3]*data[2]-data[0]*data[5]);
243 double i13 = rdet*(data[3]*data[7]-data[6]*data[4]);
244 double i23 = rdet*(data[6]*data[1]-data[0]*data[7]);
245 double i33 = rdet*(data[0]*data[4]-data[3]*data[1]);
246
247 return FGMatrix33( i11, i12, i13,
248 i21, i22, i23,
249 i31, i32, i33 );
250 } else {
251 return FGMatrix33( 0, 0, 0,
252 0, 0, 0,
253 0, 0, 0 );
254 }
255}
double Determinant(void) const
Determinant of the matrix.
FGMatrix33(void)
Default initializer.
+ Here is the call graph for this function:

◆ Invertible()

bool Invertible ( void  ) const
inline

Return if the matrix is invertible.

Checks and returns if the matrix is nonsingular and thus invertible. This is done by simply computing the determinant and check if it is zero. Note that this test does not cover any instabilities caused by nearly singular matirces using finite arithmetics. It only checks exact singularity.

Definition at line 275 of file FGMatrix33.h.

275{ return 0.0 != Determinant(); }

◆ operator()() [1/2]

double & operator() ( unsigned int  row,
unsigned int  col 
)
inline

Write access the entries of the matrix.

Note that the indices given in the arguments are unchecked.

Parameters
rowRow index.
colColumn index.
Returns
a reference to the matrix entry at the given row and column indices. Indices are counted starting with 1.

Definition at line 168 of file FGMatrix33.h.

168 {
169 return data[(col-1)*eRows+row-1];
170 }

◆ operator()() [2/2]

double operator() ( unsigned int  row,
unsigned int  col 
) const
inline

Read access the entries of the matrix.

Parameters
rowRow index.
colColumn index.
Returns
the value of the matrix entry at the given row and column indices. Indices are counted starting with 1.

Definition at line 155 of file FGMatrix33.h.

155 {
156 return data[(col-1)*eRows+row-1];
157 }

◆ operator*() [1/3]

FGMatrix33 operator* ( const double  scalar) const

Multiply the matrix with a scalar.

Parameters
scalarscalar factor to multiply with.
Returns
scaled matrix.

Compute and return the product of the current matrix with the scalar value scalar given in the argument.

Definition at line 333 of file FGMatrix33.cpp.

334{
335 return FGMatrix33( scalar * data[0],
336 scalar * data[3],
337 scalar * data[6],
338 scalar * data[1],
339 scalar * data[4],
340 scalar * data[7],
341 scalar * data[2],
342 scalar * data[5],
343 scalar * data[8] );
344}
+ Here is the call graph for this function:

◆ operator*() [2/3]

FGColumnVector3 operator* ( const FGColumnVector3 v) const

Matrix vector multiplication.

Parameters
vvector to multiply with.
Returns
matric vector product.

Compute and return the product of the current matrix with the vector given in the argument.

Definition at line 481 of file FGMatrix33.cpp.

482{
483 double v1 = v(1);
484 double v2 = v(2);
485 double v3 = v(3);
486
487 double tmp1 = v1*data[0]; //[(col-1)*eRows+row-1]
488 double tmp2 = v1*data[1];
489 double tmp3 = v1*data[2];
490
491 tmp1 += v2*data[3];
492 tmp2 += v2*data[4];
493 tmp3 += v2*data[5];
494
495 tmp1 += v3*data[6];
496 tmp2 += v3*data[7];
497 tmp3 += v3*data[8];
498
499 return FGColumnVector3( tmp1, tmp2, tmp3 );
500}

◆ operator*() [3/3]

FGMatrix33 operator* ( const FGMatrix33 B) const

Matrix product.

Parameters
Bmatrix to add to.
Returns
product of the matrices.

Compute and return the product of the current matrix and the matrix B given in the argument.

Definition at line 380 of file FGMatrix33.cpp.

381{
382 FGMatrix33 Product;
383
384 Product.data[0] = data[0]*M.data[0] + data[3]*M.data[1] + data[6]*M.data[2];
385 Product.data[3] = data[0]*M.data[3] + data[3]*M.data[4] + data[6]*M.data[5];
386 Product.data[6] = data[0]*M.data[6] + data[3]*M.data[7] + data[6]*M.data[8];
387 Product.data[1] = data[1]*M.data[0] + data[4]*M.data[1] + data[7]*M.data[2];
388 Product.data[4] = data[1]*M.data[3] + data[4]*M.data[4] + data[7]*M.data[5];
389 Product.data[7] = data[1]*M.data[6] + data[4]*M.data[7] + data[7]*M.data[8];
390 Product.data[2] = data[2]*M.data[0] + data[5]*M.data[1] + data[8]*M.data[2];
391 Product.data[5] = data[2]*M.data[3] + data[5]*M.data[4] + data[8]*M.data[5];
392 Product.data[8] = data[2]*M.data[6] + data[5]*M.data[7] + data[8]*M.data[8];
393
394 return Product;
395}

◆ operator*=() [1/2]

FGMatrix33 & operator*= ( const double  scalar)

In place matrix scale.

Parameters
scalarscalar value to multiply with.
Returns
reference to the current matrix.

Compute the product of the current matrix and the scalar value scalar given in the argument.

Definition at line 363 of file FGMatrix33.cpp.

364{
365 data[0] *= scalar;
366 data[3] *= scalar;
367 data[6] *= scalar;
368 data[1] *= scalar;
369 data[4] *= scalar;
370 data[7] *= scalar;
371 data[2] *= scalar;
372 data[5] *= scalar;
373 data[8] *= scalar;
374
375 return *this;
376}

◆ operator*=() [2/2]

FGMatrix33 & operator*= ( const FGMatrix33 B)

In place matrix multiplication.

Parameters
Bmatrix to multiply with.
Returns
reference to the current matrix.

Compute the product of the current matrix and the matrix B given in the argument.

Definition at line 399 of file FGMatrix33.cpp.

400{
401 // FIXME: Make compiler friendlier
402 double a,b,c;
403
404 a = data[0]; b=data[3]; c=data[6];
405 data[0] = a*M.data[0] + b*M.data[1] + c*M.data[2];
406 data[3] = a*M.data[3] + b*M.data[4] + c*M.data[5];
407 data[6] = a*M.data[6] + b*M.data[7] + c*M.data[8];
408
409 a = data[1]; b=data[4]; c=data[7];
410 data[1] = a*M.data[0] + b*M.data[1] + c*M.data[2];
411 data[4] = a*M.data[3] + b*M.data[4] + c*M.data[5];
412 data[7] = a*M.data[6] + b*M.data[7] + c*M.data[8];
413
414 a = data[2]; b=data[5]; c=data[8];
415 data[2] = a*M.data[0] + b*M.data[1] + c*M.data[2];
416 data[5] = a*M.data[3] + b*M.data[4] + c*M.data[5];
417 data[8] = a*M.data[6] + b*M.data[7] + c*M.data[8];
418
419 return *this;
420}

◆ operator+()

FGMatrix33 operator+ ( const FGMatrix33 B) const

Matrix addition.

Parameters
Bmatrix to add to.
Returns
sum of the matrices.

Compute and return the sum of the current matrix and the matrix B given in the argument.

Definition at line 301 of file FGMatrix33.cpp.

302{
303 return FGMatrix33( data[0] + M.data[0],
304 data[3] + M.data[3],
305 data[6] + M.data[6],
306 data[1] + M.data[1],
307 data[4] + M.data[4],
308 data[7] + M.data[7],
309 data[2] + M.data[2],
310 data[5] + M.data[5],
311 data[8] + M.data[8] );
312}
+ Here is the call graph for this function:

◆ operator+=()

FGMatrix33 & operator+= ( const FGMatrix33 B)

In place matrix addition.

Parameters
Bmatrix to add.
Returns
reference to the current matrix.

Compute the sum of the current matrix and the matrix B given in the argument.

Definition at line 316 of file FGMatrix33.cpp.

317{
318 data[0] += M.data[0];
319 data[3] += M.data[3];
320 data[6] += M.data[6];
321 data[1] += M.data[1];
322 data[4] += M.data[4];
323 data[7] += M.data[7];
324 data[2] += M.data[2];
325 data[5] += M.data[5];
326 data[8] += M.data[8];
327
328 return *this;
329}

◆ operator-()

FGMatrix33 operator- ( const FGMatrix33 B) const

Matrix subtraction.

Parameters
Bmatrix to add to.
Returns
difference of the matrices.

Compute and return the sum of the current matrix and the matrix B given in the argument.

Definition at line 269 of file FGMatrix33.cpp.

270{
271 return FGMatrix33( data[0] - M.data[0],
272 data[3] - M.data[3],
273 data[6] - M.data[6],
274 data[1] - M.data[1],
275 data[4] - M.data[4],
276 data[7] - M.data[7],
277 data[2] - M.data[2],
278 data[5] - M.data[5],
279 data[8] - M.data[8] );
280}
+ Here is the call graph for this function:

◆ operator-=()

FGMatrix33 & operator-= ( const FGMatrix33 B)

In place matrix subtraction.

Parameters
Bmatrix to subtract.
Returns
reference to the current matrix.

Compute the diffence from the current matrix and the matrix B given in the argument.

Definition at line 284 of file FGMatrix33.cpp.

285{
286 data[0] -= M.data[0];
287 data[1] -= M.data[1];
288 data[2] -= M.data[2];
289 data[3] -= M.data[3];
290 data[4] -= M.data[4];
291 data[5] -= M.data[5];
292 data[6] -= M.data[6];
293 data[7] -= M.data[7];
294 data[8] -= M.data[8];
295
296 return *this;
297}

◆ operator/()

FGMatrix33 operator/ ( const double  scalar) const

Multiply the matrix with 1.0/scalar.

Parameters
scalarscalar factor to divide through.
Returns
scaled matrix.

Compute and return the product of the current matrix with the scalar value 1.0/scalar, where scalar is given in the argument.

Definition at line 424 of file FGMatrix33.cpp.

425{
426 FGMatrix33 Quot;
427
428 double tmp = 1.0/scalar;
429 Quot.data[0] = data[0] * tmp;
430 Quot.data[3] = data[3] * tmp;
431 Quot.data[6] = data[6] * tmp;
432 Quot.data[1] = data[1] * tmp;
433 Quot.data[4] = data[4] * tmp;
434 Quot.data[7] = data[7] * tmp;
435 Quot.data[2] = data[2] * tmp;
436 Quot.data[5] = data[5] * tmp;
437 Quot.data[8] = data[8] * tmp;
438
439 return Quot;
440}

◆ operator/=()

FGMatrix33 & operator/= ( const double  scalar)

In place matrix scale.

Parameters
scalarscalar value to divide through.
Returns
reference to the current matrix.

Compute the product of the current matrix and the scalar value 1.0/scalar, where scalar is given in the argument.

Definition at line 444 of file FGMatrix33.cpp.

445{
446 double tmp = 1.0/scalar;
447 data[0] *= tmp;
448 data[3] *= tmp;
449 data[6] *= tmp;
450 data[1] *= tmp;
451 data[4] *= tmp;
452 data[7] *= tmp;
453 data[2] *= tmp;
454 data[5] *= tmp;
455 data[8] *= tmp;
456
457 return *this;
458}

◆ operator=() [1/2]

FGMatrix33 & operator= ( const FGMatrix33 A)
inline

Assignment operator.

Parameters
Asource matrix.

Copy the content of the matrix given in the argument into *this.

Definition at line 291 of file FGMatrix33.h.

292 {
293 data[0] = A.data[0];
294 data[1] = A.data[1];
295 data[2] = A.data[2];
296 data[3] = A.data[3];
297 data[4] = A.data[4];
298 data[5] = A.data[5];
299 data[6] = A.data[6];
300 data[7] = A.data[7];
301 data[8] = A.data[8];
302 return *this;
303 }

◆ operator=() [2/2]

FGMatrix33 & operator= ( std::initializer_list< double >  lv)
inline

Assignment operator.

Parameters
lvinitializer list of at most 9 values.

Copy the content of the list into *this.

Definition at line 310 of file FGMatrix33.h.

311 {
312 double *v = data;
313 for(auto& x: lv) {
314 *v = x;
315 v += 3;
316 if (v-data > 8)
317 v -= 8;
318 }
319
320 return *this;
321 }

◆ Rows()

unsigned int Rows ( void  ) const
inline

Number of rows in the matrix.

Returns
the number of rows in the matrix.

Definition at line 209 of file FGMatrix33.h.

209{ return eRows; }

◆ T()

void T ( void  )

Transposes this matrix.

This function only transposes this matrix. Nothing is returned.

Definition at line 462 of file FGMatrix33.cpp.

463{
464 double tmp;
465
466 tmp = data[3];
467 data[3] = data[1];
468 data[1] = tmp;
469
470 tmp = data[6];
471 data[6] = data[2];
472 data[2] = tmp;
473
474 tmp = data[7];
475 data[7] = data[5];
476 data[5] = tmp;
477}

◆ Transposed()

FGMatrix33 Transposed ( void  ) const
inline

Transposed matrix.

This function only returns the transpose of this matrix. This matrix itself remains unchanged.

Returns
the transposed matrix.

Definition at line 221 of file FGMatrix33.h.

221 {
222 return FGMatrix33( data[0], data[1], data[2],
223 data[3], data[4], data[5],
224 data[6], data[7], data[8] );
225 }
+ Here is the caller graph for this function:

The documentation for this class was generated from the following files: