JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGQuaternion.cpp
1/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3 Module: FGQuaternion.cpp
4 Author: Jon Berndt, Mathias Froehlich
5 Date started: 12/02/98
6
7 ------- Copyright (C) 1999 Jon S. Berndt (jon@jsbsim.org) ------------------
8 ------- (C) 2004 Mathias Froehlich (Mathias.Froehlich@web.de) ----
9
10 This program is free software; you can redistribute it and/or modify it under
11 the terms of the GNU Lesser General Public License as published by the Free Software
12 Foundation; either version 2 of the License, or (at your option) any later
13 version.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
18 details.
19
20 You should have received a copy of the GNU Lesser General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59 Temple
22 Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 Further information about the GNU Lesser General Public License can also be found on
25 the world wide web at http://www.gnu.org.
26
27HISTORY
28-------------------------------------------------------------------------------
2912/02/98 JSB Created
3015/01/04 Mathias Froehlich implemented a quaternion class from many places
31 in JSBSim.
32
33%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34SENTRY
35%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
36
37/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 INCLUDES
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
40
41#include <string>
42#include <iostream>
43#include <sstream>
44#include <iomanip>
45#include <cmath>
46using std::cerr;
47using std::cout;
48using std::endl;
49
50#include "FGMatrix33.h"
51#include "FGColumnVector3.h"
52
53#include "FGQuaternion.h"
54
55/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 DEFINITIONS
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
58
59namespace JSBSim {
60
61//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62
63// Initialize from q
64FGQuaternion::FGQuaternion(const FGQuaternion& q) : mCacheValid(q.mCacheValid)
65{
66 data[0] = q(1);
67 data[1] = q(2);
68 data[2] = q(3);
69 data[3] = q(4);
70 if (mCacheValid) {
71 mT = q.mT;
72 mTInv = q.mTInv;
73 mEulerAngles = q.mEulerAngles;
74 mEulerSines = q.mEulerSines;
75 mEulerCosines = q.mEulerCosines;
76 }
77}
78
79//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
80
81// Initialize with the three euler angles
82FGQuaternion::FGQuaternion(double phi, double tht, double psi): mCacheValid(false)
83{
84 InitializeFromEulerAngles(phi, tht, psi);
85}
86
87//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88
89FGQuaternion::FGQuaternion(FGColumnVector3 vOrient): mCacheValid(false)
90{
91 double phi = vOrient(ePhi);
92 double tht = vOrient(eTht);
93 double psi = vOrient(ePsi);
94
95 InitializeFromEulerAngles(phi, tht, psi);
96}
97
98//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99//
100// This function computes the quaternion that describes the relationship of the
101// body frame with respect to another frame, such as the ECI or ECEF frames. The
102// Euler angles used represent a 3-2-1 (psi, theta, phi) rotation sequence from
103// the reference frame to the body frame. See "Quaternions and Rotation
104// Sequences", Jack B. Kuipers, sections 9.2 and 7.6.
105
106void FGQuaternion::InitializeFromEulerAngles(double phi, double tht, double psi)
107{
108 mEulerAngles(ePhi) = phi;
109 mEulerAngles(eTht) = tht;
110 mEulerAngles(ePsi) = psi;
111
112 double thtd2 = 0.5*tht;
113 double psid2 = 0.5*psi;
114 double phid2 = 0.5*phi;
115
116 double Sthtd2 = sin(thtd2);
117 double Spsid2 = sin(psid2);
118 double Sphid2 = sin(phid2);
119
120 double Cthtd2 = cos(thtd2);
121 double Cpsid2 = cos(psid2);
122 double Cphid2 = cos(phid2);
123
124 double Cphid2Cthtd2 = Cphid2*Cthtd2;
125 double Cphid2Sthtd2 = Cphid2*Sthtd2;
126 double Sphid2Sthtd2 = Sphid2*Sthtd2;
127 double Sphid2Cthtd2 = Sphid2*Cthtd2;
128
129 data[0] = Cphid2Cthtd2*Cpsid2 + Sphid2Sthtd2*Spsid2;
130 data[1] = Sphid2Cthtd2*Cpsid2 - Cphid2Sthtd2*Spsid2;
131 data[2] = Cphid2Sthtd2*Cpsid2 + Sphid2Cthtd2*Spsid2;
132 data[3] = Cphid2Cthtd2*Spsid2 - Sphid2Sthtd2*Cpsid2;
133
134 Normalize();
135}
136//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137// Initialize with a direction cosine (rotation) matrix
138
139FGQuaternion::FGQuaternion(const FGMatrix33& m) : mCacheValid(false)
140{
141 data[0] = 0.50*sqrt(1.0 + m(1,1) + m(2,2) + m(3,3));
142 double t = 0.25/data[0];
143 data[1] = t*(m(2,3) - m(3,2));
144 data[2] = t*(m(3,1) - m(1,3));
145 data[3] = t*(m(1,2) - m(2,1));
146
147 Normalize();
148}
149
150//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
151
159{
160 return FGQuaternion(
161 -0.5*( data[1]*PQR(eP) + data[2]*PQR(eQ) + data[3]*PQR(eR)),
162 0.5*( data[0]*PQR(eP) - data[3]*PQR(eQ) + data[2]*PQR(eR)),
163 0.5*( data[3]*PQR(eP) + data[0]*PQR(eQ) - data[1]*PQR(eR)),
164 0.5*(-data[2]*PQR(eP) + data[1]*PQR(eQ) + data[0]*PQR(eR))
165 );
166}
167
168//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
169
171{
172 // Note: this does not touch the cache since it does not change the orientation
173 double norm = Magnitude();
174 if (norm == 0.0 || fabs(norm - 1.000) < 1e-10) return;
175
176 double rnorm = 1.0/norm;
177
178 data[0] *= rnorm;
179 data[1] *= rnorm;
180 data[2] *= rnorm;
181 data[3] *= rnorm;
182}
183
184//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
185
186// Compute the derived values if required ...
187void FGQuaternion::ComputeDerivedUnconditional(void) const
188{
189 mCacheValid = true;
190
191 double q0 = data[0]; // use some aliases/shorthand for the quat elements.
192 double q1 = data[1];
193 double q2 = data[2];
194 double q3 = data[3];
195
196 // Now compute the transformation matrix.
197 double q0q0 = q0*q0;
198 double q1q1 = q1*q1;
199 double q2q2 = q2*q2;
200 double q3q3 = q3*q3;
201 double q0q1 = q0*q1;
202 double q0q2 = q0*q2;
203 double q0q3 = q0*q3;
204 double q1q2 = q1*q2;
205 double q1q3 = q1*q3;
206 double q2q3 = q2*q3;
207
208 mT(1,1) = q0q0 + q1q1 - q2q2 - q3q3; // This is found from Eqn. 1.3-32 in
209 mT(1,2) = 2.0*(q1q2 + q0q3); // Stevens and Lewis
210 mT(1,3) = 2.0*(q1q3 - q0q2);
211 mT(2,1) = 2.0*(q1q2 - q0q3);
212 mT(2,2) = q0q0 - q1q1 + q2q2 - q3q3;
213 mT(2,3) = 2.0*(q2q3 + q0q1);
214 mT(3,1) = 2.0*(q1q3 + q0q2);
215 mT(3,2) = 2.0*(q2q3 - q0q1);
216 mT(3,3) = q0q0 - q1q1 - q2q2 + q3q3;
217
218 // Since this is an orthogonal matrix, the inverse is simply the transpose.
219
220 mTInv = mT;
221 mTInv.T();
222
223 // Compute the Euler-angles
224
225 mEulerAngles = mT.GetEuler();
226
227 // FIXME: may be one can compute those values easier ???
228 mEulerSines(ePhi) = sin(mEulerAngles(ePhi));
229 // mEulerSines(eTht) = sin(mEulerAngles(eTht));
230 mEulerSines(eTht) = -mT(1,3);
231 mEulerSines(ePsi) = sin(mEulerAngles(ePsi));
232 mEulerCosines(ePhi) = cos(mEulerAngles(ePhi));
233 mEulerCosines(eTht) = cos(mEulerAngles(eTht));
234 mEulerCosines(ePsi) = cos(mEulerAngles(ePsi));
235}
236
237//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
238
239std::string FGQuaternion::Dump(const std::string& delimiter) const
240{
241 std::ostringstream buffer;
242 buffer << std::setprecision(16) << data[0] << delimiter;
243 buffer << std::setprecision(16) << data[1] << delimiter;
244 buffer << std::setprecision(16) << data[2] << delimiter;
245 buffer << std::setprecision(16) << data[3];
246 return buffer.str();
247}
248
249//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
250
251std::ostream& operator<<(std::ostream& os, const FGQuaternion& q)
252{
253 os << q(1) << " , " << q(2) << " , " << q(3) << " , " << q(4);
254 return os;
255}
256
257} // namespace JSBSim
This class implements a 3 element column vector.
Handles matrix math operations.
Definition FGMatrix33.h:70
void T(void)
Transposes this matrix.
FGColumnVector3 GetEuler() const
Returns the Euler angle column vector associated with this matrix.
Models the Quaternion representation of rotations.
void Normalize(void)
Normalize.
double Magnitude(void) const
Length of the vector.
FGQuaternion GetQDot(const FGColumnVector3 &PQR) const
Quaternion derivative for given angular rates.
FGQuaternion()
Default initializer.