JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGFunction Class Reference

Detailed Description

Represents a mathematical function.

The FGFunction class is a powerful and versatile resource that allows algebraic functions to be defined in a JSBSim configuration file. It is similar in concept to MathML (Mathematical Markup Language, www.w3.org/Math/), but simpler and more terse. A function definition consists of an operation, a value, a table, or a property (which evaluates to a value). The currently supported operations are:

  • sum (takes n args)
  • difference (takes n args)
  • product (takes n args)
  • quotient (takes 2 args)
  • pow (takes 2 args)
  • sqrt (takes one argument)
  • toradians (takes one argument)
  • todegrees (takes one argument)
  • exp (takes 2 args)
  • log2 (takes 1 arg)
  • ln (takes 1 arg)
  • log10 (takes 1 arg)
  • abs (takes 1 arg)
  • sin (takes 1 arg)
  • cos (takes 1 arg)
  • tan (takes 1 arg)
  • asin (takes 1 arg)
  • acos (takes 1 arg)
  • atan (takes 1 arg)
  • atan2 (takes 2 args)
  • min (takes n args)
  • max (takes n args)
  • avg (takes n args)
  • fraction
  • mod
  • floor (takes 1 arg)
  • ceil (takes 1 arg)
  • fmod (takes 2 args)
  • roundmultiple (takes 2 args)
  • lt (less than, takes 2 args)
  • le (less equal, takes 2 args)
  • gt (greater than, takes 2 args)
  • ge (greater than, takes 2 args)
  • eq (equal, takes 2 args)
  • nq (not equal, takes 2 args)
  • and (takes n args)
  • or (takes n args)
  • not (takes 1 args)
  • if-then (takes 2-3 args)
  • switch (takes 2 or more args)
  • random (Gaussian distribution random number)
  • urandom (Uniform random number between -1 and +1)
  • pi
  • integer
  • interpolate 1-dimensional (takes a minimum of five arguments, odd number)

An operation is defined in the configuration file as in the following example:

<sum>
<value> 3.14159 </value>
<property> velocities/qbar </property>
<product>
<value> 0.125 </value>
<property> metrics/wingarea </property>
</product>
</sum>

A full function definition, such as is used in the aerodynamics section of a configuration file includes the function element, and other elements. It should be noted that there can be only one non-optional (non-documentation) element - that is, one operation element or one table element - in the top-level function definition. Multiple value and/or property elements cannot be immediate child members of the function element. Almost always, the first operation within the function element will be a product or sum. For example:

<function name="aero/moment/Clr">
<description>Roll moment due to yaw rate</description>
<product>
<property>aero/qbar-area</property>
<property>metrics/bw-ft</property>
<property>aero/bi2vel</property>
<property>velocities/r-aero-rad_sec</property>
<table>
<independentVar>aero/alpha-rad</independentVar>
<tableData>
0.000 0.08
0.094 0.19
</tableData>
</table>
</product>
</function>

The "lowest level" in a function is always a value or a property, which cannot itself contain another element. As shown, operations can contain values, properties, tables, or other operations. In the first above example, the sum element contains all three. What is evaluated is written algebraically as:

3.14159 + qbar + (0.125 * wingarea)

Some operations can take only a single argument. That argument, however, can be an operation (such as sum) which can contain other items. The point to keep in mind is that it evaluates to a single value - which is just what the trigonometric functions require (except atan2, which takes two arguments).

Specific Function Definitions

Note: In the definitions below, a "property" refers to a single property specified within either the <property></property> tag or the shortcut tag, <p></p>. The keyword "value" refers to a single numeric value specified either within the <value></value> tag or the shortcut <v></v> tag. The keyword "table" refers to a single table specified either within the <table></table> tag or the shortcut <t></t> tag. The plural form of any of the three words refers to one or more instances of a property, value, or table.

  • sum, sums the values of all immediate child elements:
    <sum>
    {properties, values, tables, or other function elements}
    </sum>
    Example: Mach + 0.01
    <sum>
    <p> velocities/mach </p>
    <v> 0.01 </v>
    </sum>
  • difference, subtracts the values of all immediate child elements from the value of the first child element:
    <difference>
    {properties, values, tables, or other function elements}
    </difference>
    Example: Mach - 0.01
    <difference>
    <p> velocities/mach </p>
    <v> 0.01 </v>
    </difference>
  • product multiplies together the values of all immediate child elements:
    <product>
    {properties, values, tables, or other function elements}
    </product>
    Example: qbar*S*beta*CY_beta
    <product>
    <property> aero/qbar-psf </property>
    <property> metrics/Sw-sqft </property>
    <property> aero/beta-rad </property>
    <property> aero/coefficient/CY_beta </property>
    </product>
  • quotient, divides the value of the first immediate child element by the second immediate child element:
    <quotient>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </quotient>
    Example: (2*GM)/R
    <quotient>
    <product>
    <v> 2.0 </v>
    <p> guidance/executive/gm </p>
    </product>
    <p> position/radius-to-vehicle-ft </p>
    </quotient>
  • pow, raises the value of the first immediate child element to the power of the value of the second immediate child element:
    <pow>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </pow>
    Example: Mach^2
    <pow>
    <p> velocities/mach </p>
    <v> 2.0 </v>
    </pow>
  • sqrt, takes the square root of the value of the immediate child element:
    <sqrt>
    {property, value, table, or other function element}
    </sqrt>
    Example: square root of 25
    <sqrt> <v> 25.0 </v> </sqrt>
  • toradians, converts a presumed argument in degrees to radians by multiplying the value of the immediate child element by pi/180:
    <toradians>
    {property, value, table, or other function element}
    </toradians>
    Example: convert 45 degrees to radians
    <toradians> <v> 45 </v> </toradians>
  • todegrees, converts a presumed argument in radians to degrees by multiplying the value of the immediate child element by 180/pi:
    <todegrees>
    {property, value, table, or other function element}
    </todegrees>
    Example: convert 0.5*pi radians to degrees
    <todegrees>
    <product> <v> 0.5 </v> <pi/> </product>
    </todegrees>
  • exp, raises "e" to the power of the immediate child element:
    <exp>
    {property, value, table, or other function element}
    </exp>
    Example: raise "e" to the 1.5 power, e^1.5
    <exp> <v> 1.5 </v> </exp>
  • log2, calculates the log base 2 value of the immediate child element:
    <log2>
    {property, value, table, or other function element}
    </log2>
    Example:
    <log2> <v> 128 </v> </log2>
  • ln, calculates the natural logarithm of the value of the immediate child element:
    <ln>
    {property, value, table, or other function element}
    </ln>
    Example: ln(128)
    <ln> <v> 200 </v> </ln>
  • log10, calculates the base 10 logarithm of the value of the immediate child element
    <log10>
    {property, value, table, or other function element}
    </log10>
    Example log(Mach)
    <log10> <p> velocities/mach </p> </log10>
  • abs calculates the absolute value of the immediate child element
    <abs>
    {property, value, table, or other function element}
    </abs>
    Example:
    <abs> <p> flight-path/gamma-rad </p> </abs>
  • sin, calculates the sine of the value of the immediate child element (the argument is expected to be in radians)
    <sin>
    {property, value, table, or other function element}
    </sin>
    Example:
    <sin> <toradians> <p> fcs/heading-true-degrees </p> </toradians> </sin>
  • cos, calculates the cosine of the value of the immediate child element (the argument is expected to be in radians)
    <cos>
    {property, value, table, or other function element}
    </cos>
    Example:
    <cos> <toradians> <p> fcs/heading-true-degrees </p> </toradians> </cos>
  • tan, calculates the tangent of the value of the immediate child element (the argument is expected to be in radians)
    <tan>
    {property, value, table, or other function element}
    </tan>
    Example:
    <tan> <toradians> <p> fcs/heading-true-degrees </p> </toradians> </tan>
  • asin, calculates the arcsine (inverse sine) of the value of the immediate child element. The value provided should be in the range from -1 to +1. The value returned will be expressed in radians, and will be in the range from -pi/2 to +pi/2.
    <asin>
    {property, value, table, or other function element}
    </asin>
    Example:
    <asin> <v> 0.5 </v> </asin>
  • acos, calculates the arccosine (inverse cosine) of the value of the immediate child element. The value provided should be in the range from -1 to +1. The value returned will be expressed in radians, and will be in the range from 0 to pi.
    <acos>
    {property, value, table, or other function element}
    </acos>
    Example:
    <acos> <v> 0.5 </v> </acos>
  • atan, calculates the inverse tangent of the value of the immediate child element. The value returned will be expressed in radians, and will be in the range from -pi/2 to +pi/2.
    <atan>
    {property, value, table, or other function element}
    </atan>
    Example:
    <atan> <v> 0.5 </v> </atan>
  • atan2 calculates the inverse tangent of the value of the immediate child elements, Y/X (in that order). It even works for X values near zero. The value returned will be expressed in radians, and in the range -pi to +pi.
    <atan2>
    {property, value, table, or other function element} {property, value, table, or other function element}
    </atan2>
    Example: inverse tangent of 0.5/0.25, evaluates to: 1.107 radians
    <atan2> <v> 0.5 </<v> <v> 0.25 </v> </atan2>
  • min returns the smallest value from all the immediate child elements
    <min>
    {properties, values, tables, or other function elements}
    </min>
    Example: returns the lesser of velocity and 2500
    <min>
    <p> velocities/eci-velocity-mag-fps </p>
    <v> 2500.0 </v>
    </min>
  • max returns the largest value from all the immediate child elements
    <max>
    {properties, values, tables, or other function elements}
    </max>
    Example: returns the greater of velocity and 15000
    <max>
    <p> velocities/eci-velocity-mag-fps </p>
    <v> 15000.0 </v>
    </max>
  • avg returns the average value of all the immediate child elements
    <avg>
    {properties, values, tables, or other function elements}
    </avg>
    Example: returns the average of the four numbers below, evaluates to 0.50.
    <avg>
    <v> 0.25 </v>
    <v> 0.50 </v>
    <v> 0.75 </v>
    <v> 0.50 </v>
    </avg>
  • fraction, returns the fractional part of the value of the immediate child element
    <fraction>
    {property, value, table, or other function element}
    </fraction>
    Example: returns the fractional part of pi - or, roughly, 0.1415926...
    <fraction> <pi/> </fraction>
  • integer, returns the integer portion of the value of the immediate child element
    <integer>
    {property, value, table, or other function element}
    </integer>
  • mod returns the remainder from the integer division of the value of the first immediate child element by the second immediate child element, X/Y (X modulo Y). The value returned is the value X-I*Y, for the largest integer I such that if Y is nonzero, the result has the same sign as X and magnitude less than the magnitude of Y. For instance, the expression "5 mod 2" would evaluate to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder of 0.
    <mod>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </mod>
    Example: 5 mod 2, evaluates to 1
    <mod> <v> 5 </v> <v> 2 </v> </mod>
  • floor returns the largest integral value that is not greater than X.
    <floor>
    {property, value, table, or other function element}
    </floor>
    Examples: floor(2.3) evaluates to 2.0 while floor(-2.3) evaluates to -3.0
  • ceil returns the smallest integral value that is not less than X.
    <ceil>
    {property, value, table, or other function element}
    </ceil>
    Examples: ceil(2.3) evaluates to 3.0 while ceil(-2.3) evaluates to -2.0
  • fmod returns the floating-point remainder of X/Y (rounded towards zero)
    <fmod>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </fmod>
    Example: fmod(18.5, 4.2) evaluates to 1.7
  • roundmultiple returns the floating-point rounding of X to a multiple of M. round(X/M) * M
    <roundmultiple>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </roundmultiple>
    Example: roundmultiple(93.43, 5.0) evaluates to 95.0
  • lt returns a 1 if the value of the first immediate child element is less than the value of the second immediate child element, returns 0 otherwise
    <lt>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </lt>
    Example: returns 1 if thrust is less than 10,000, returns 0 otherwise
    <lt>
    <p> propulsion/engine[2]/thrust-lbs </p>
    <v> 10000.0 </v>
    </lt>
  • le, returns a 1 if the value of the first immediate child element is less than or equal to the value of the second immediate child element, returns 0 otherwise
    <le>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </le>
    Example: returns 1 if thrust is less than or equal to 10,000, returns 0 otherwise
    <le>
    <p> propulsion/engine[2]/thrust-lbs </p>
    <v> 10000.0 </v>
    </le>
  • gt returns a 1 if the value of the first immediate child element is greater than the value of the second immediate child element, returns 0 otherwise
    <gt>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </gt>
    Example: returns 1 if thrust is greater than 10,000, returns 0 otherwise
    <gt>
    <p> propulsion/engine[2]/thrust-lbs </p>
    <v> 10000.0 </v>
    </gt>
  • ge, returns a 1 if the value of the first immediate child element is greater than or equal to the value of the second immediate child element, returns 0 otherwise
    <ge>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </ge>
    Example: returns 1 if thrust is greater than or equal to 10,000, returns 0
    otherwise
    <ge>
    <p> propulsion/engine[2]/thrust-lbs </p>
    <v> 10000.0 </v>
    </ge>
  • eq returns a 1 if the value of the first immediate child element is equal to the second immediate child element, returns 0 otherwise
    <eq>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </eq>
    Example: returns 1 if thrust is equal to 10,000, returns 0 otherwise
    <eq>
    <p> propulsion/engine[2]/thrust-lbs </p>
    <v> 10000.0 </v>
    </eq>
  • nq returns a 1 if the value of the first immediate child element is not equal to the value of the second immediate child element, returns 0 otherwise
    <nq>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </nq>
    Example: returns 1 if thrust is not 0, returns 0 otherwise
    <nq>
    <p> propulsion/engine[2]/thrust-lbs </p>
    <v> 0.0 </v>
    </nq>
  • and returns a 1 if the values of the immediate child elements are all 1, returns 0 otherwise. Values provided are expected to be either 1 or 0 within machine precision.
    <and>
    {properties, values, tables, or other function elements}
    </and>
    Example: returns 1 if the specified flags are all 1
    <and>
    <p> guidance/first-stage-flight-flag </p>
    <p> control/engines-running-flag </p>
    </and>
  • or returns a 1 if the values of any of the immediate child elements 1, returns 0 otherwise. Values provided are expected to be either 1 or 0 within machine precision.
    <or>
    {properties, values, tables, or other function elements}
    </or>
    Example: returns 1 if any of the specified flags are 1
    <or>
    <p> guidance/first-stage-flight-flag </p>
    <p> control/engines-running-flag </p>
    </or>
  • not, returns the inverse of the value of the supplied immediate child element (e.g., returns 1 if supplied a 0)
    <not>
    {property, value, table, or other function element}
    </not>
    Example: returns 0 if the value of the supplied flag is 1
    <not> <p> guidance/first-stage-flight-flag </p> </not>
  • ifthen if the value of the first immediate child element is 1, then the value of the second immediate child element is returned, otherwise the value of the third child element is returned
    <ifthen>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    </ifthen>
    Example: if flight-mode is greater than 2, then a value of 0.00 is
    returned, otherwise the value of the property control/pitch-lag is
    returned.
    <ifthen>
    <gt> <p> executive/flight-mode </p> <v> 2 </v> </gt>
    <v> 0.00 </v>
    <p> control/pitch-lag </p>
    </ifthen>
  • switch uses the integer value of the first immediate child element as an index to select one of the subsequent immediate child elements to return the value of
    <switch>
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    {property, value, table, or other function element}
    ...
    </switch>
    Example: if flight-mode is 2, the switch function returns 0.50
    <switch>
    <p> executive/flight-mode </p>
    <v> 0.25 </v>
    <v> 0.50 </v>
    <v> 0.75 </v>
    <v> 1.00 </v>
    </switch>
  • random Returns a normal distributed random number. The function, without parameters, returns a normal distributed random value with a distribution defined by the parameters mean = 0.0 and standard deviation (stddev) = 1.0 The Mean of the distribution (its expected value, μ). Which coincides with the location of its peak. Standard deviation (σ): The square root of variance, representing the dispersion of values from the distribution mean. This shall be a positive value (σ>0).
    <random/>
    <random seed="1234"/>
    <random seed="time_now"/>
    <random seed="time_now" mean="0.0" stddev="1.0"/>
  • urandom Returns a uniformly distributed random number. The function, without parameters, returns a random value between the minimum value -1.0 and the maximum value of 1.0 The two maximum and minimum values can be modified using the lower and upper parameters.
    <urandom/>
    <random seed="1234"/>
    <random seed="time_now"/>
    <random seed="time_now" lower="-1.0" upper="1.0"/>
  • pi Takes no argument and returns the value of Pi
    <pi/>
  • interpolate1d returns the result from a 1-dimensional interpolation of the supplied values, with the value of the first immediate child element representing the lookup value into the table, and the following pairs of values representing the independent and dependent values. The first provided child element is expected to be a property. The interpolation does not extrapolate, but holds the highest value if the provided lookup value goes outside of the provided range.
    <interpolate1d>
    {property, value, table, or other function element}
    {property, value, table, or other function element} {property, value, table, or other function element}
    ...
    </interpolate1d>
    Example: If mach is 0.4, the interpolation will return 0.375. If mach is
    1.5, the interpolation will return 0.60.
    <interpolate1d>
    <p> velocities/mach </p>
    <v> 0.00 </v> <v> 0.25 </v>
    <v> 0.80 </v> <v> 0.50 </v>
    <v> 0.90 </v> <v> 0.60 </v>
    </interpolate1d>
    Author
    Jon Berndt

Definition at line 764 of file FGFunction.h.

#include <FGFunction.h>

+ Inheritance diagram for FGFunction:
+ Collaboration diagram for FGFunction:

Public Types

enum class  OddEven { Either , Odd , Even }
 
- Public Types inherited from FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 

Public Member Functions

 FGFunction ()
 Default constructor.
 
 FGFunction (FGFDMExec *fdmex, Element *element, const std::string &prefix="", FGPropertyValue *var=0L)
 Constructor.
 
 FGFunction (std::shared_ptr< FGPropertyManager > pm)
 
 ~FGFunction (void) override
 Destructor Make sure the function is untied before destruction.
 
void cacheValue (bool shouldCache)
 Specifies whether to cache the value of the function, so it is calculated only once per frame.
 
std::string GetName (void) const override
 Retrieves the name of the function.
 
double GetValue (void) const override
 Retrieves the value of the function object.
 
std::string GetValueAsString (void) const
 The value that the function evaluates to, as a string.
 
bool IsConstant (void) const override
 Does the function always return the same result (i.e.
 
- Public Member Functions inherited from FGParameter
double getDoubleValue (void) const
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Protected Member Functions

virtual void bind (Element *, const std::string &)
 
void CheckMaxArguments (Element *el, unsigned int _max)
 
void CheckMinArguments (Element *el, unsigned int _min)
 
void CheckOddOrEvenArguments (Element *el, OddEven odd_even)
 
std::string CreateOutputNode (Element *el, const std::string &Prefix)
 
void Load (Element *element, FGPropertyValue *var, FGFDMExec *fdmex, const std::string &prefix="")
 

Protected Attributes

bool cached
 
double cachedValue
 
std::vector< FGParameter_ptr > Parameters
 
FGPropertyNode_ptr pNode
 
std::shared_ptr< FGPropertyManagerPropertyManager
 

Additional Inherited Members

- Static Public Member Functions inherited from FGJSBBase
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
- Static Public Attributes inherited from FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Static Protected Attributes inherited from FGJSBBase
static constexpr double radtodeg = 180. / M_PI
 
static constexpr double degtorad = M_PI / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double fttom = 0.3048
 
static constexpr double ktstofps = 1852./(3600*fttom)
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 

Member Enumeration Documentation

◆ OddEven

enum class OddEven
strong

Definition at line 825 of file FGFunction.h.

825{Either, Odd, Even};

Constructor & Destructor Documentation

◆ FGFunction() [1/3]

FGFunction ( )
inline

Default constructor.

Definition at line 768 of file FGFunction.h.

769 : cached(false), cachedValue(-HUGE_VAL), pNode(nullptr), pCopyTo(nullptr) {}

◆ FGFunction() [2/3]

FGFunction ( std::shared_ptr< FGPropertyManager pm)
inlineexplicit

Definition at line 771 of file FGFunction.h.

772 : FGFunction()
773 { PropertyManager = pm; }
FGFunction()
Default constructor.
Definition FGFunction.h:768

◆ FGFunction() [3/3]

FGFunction ( FGFDMExec fdmex,
Element element,
const std::string &  prefix = "",
FGPropertyValue var = 0L 
)

Constructor.

When this constructor is called, the XML element pointed to in memory by the element argument is traversed. If other FGParameter-derived objects (values, functions, properties, or tables) are encountered, this instance of the FGFunction object will store a pointer to the found object and pass the relevant Element pointer to the constructor for the new object. In other words, each FGFunction object maintains a list of "child" FGParameter-derived objects which in turn may each contain its own list, and so on. At runtime, each object evaluates its child parameters, which each may have its own child parameters to evaluate.

Parameters
PropertyManagera pointer to the property manager instance.
elementa pointer to the Element object containing the function definition.
prefixan optional prefix to prepend to the name given to the property that represents this function (if given).

Definition at line 207 of file FGFunction.cpp.

209 : FGFunction(fdmex->GetPropertyManager())
210{
211 Load(el, var, fdmex, prefix);
212 CheckMinArguments(el, 1);
213 CheckMaxArguments(el, 1);
214
215 string sCopyTo = el->GetAttributeValue("copyto");
216
217 if (!sCopyTo.empty()) {
218 if (sCopyTo.find("#") != string::npos) {
219 if (is_number(prefix))
220 sCopyTo = replace(sCopyTo,"#",prefix);
221 else {
222 cerr << el->ReadFrom() << fgred
223 << "Illegal use of the special character '#'" << reset << endl
224 << "The 'copyto' argument in function " << Name << " is ignored."
225 << endl;
226 return;
227 }
228 }
229
230 pCopyTo = PropertyManager->GetNode(sCopyTo);
231 if (!pCopyTo)
232 cerr << el->ReadFrom() << fgred
233 << "Property \"" << sCopyTo
234 << "\" must be previously defined in function " << Name << reset
235 << "The 'copyto' argument is ignored." << endl;
236 }
237}
static char fgred[6]
red text
Definition FGJSBBase.h:166
static char reset[5]
resets text properties
Definition FGJSBBase.h:156
+ Here is the call graph for this function:

◆ ~FGFunction()

~FGFunction ( void  )
override

Destructor Make sure the function is untied before destruction.

Definition at line 933 of file FGFunction.cpp.

934{
935 if (pNode && pNode->isTied())
936 PropertyManager->Untie(pNode);
937
938 Debug(1);
939}

Member Function Documentation

◆ bind()

void bind ( Element el,
const std::string &  Prefix 
)
protectedvirtual

Definition at line 1026 of file FGFunction.cpp.

1027{
1028 string nName = CreateOutputNode(el, Prefix);
1029
1030 if (!nName.empty())
1031 PropertyManager->Tie(nName, this, &FGFunction::GetValue);
1032}
double GetValue(void) const override
Retrieves the value of the function object.

◆ cacheValue()

void cacheValue ( bool  shouldCache)

Specifies whether to cache the value of the function, so it is calculated only once per frame.

If shouldCache is true, then the value of the function is calculated, and a flag is set so further calculations done this frame will use the cached value. In order to turn off caching, cacheValue must be called with a false argument.

Parameters
shouldCachespecifies whether the function should cache the computed value.

Definition at line 955 of file FGFunction.cpp.

956{
957 cached = false; // Must set cached to false prior to calling GetValue(), else
958 // it will _never_ calculate the value;
959 if (cache) {
960 cachedValue = GetValue();
961 cached = true;
962 }
963}
+ Here is the call graph for this function:

◆ CheckMaxArguments()

void CheckMaxArguments ( Element el,
unsigned int  _max 
)
protected

Definition at line 254 of file FGFunction.cpp.

255{
256 if (Parameters.size() > _max) {
257 ostringstream buffer;
258 buffer << el->ReadFrom() << fgred << highint
259 << "<" << el->GetName() << "> should have no more than " << _max
260 << " argument(s)." << reset << endl;
261 throw WrongNumberOfArguments(buffer.str(), Parameters, el);
262 }
263}
static char highint[5]
highlights text
Definition FGJSBBase.h:150

◆ CheckMinArguments()

void CheckMinArguments ( Element el,
unsigned int  _min 
)
protected

Definition at line 241 of file FGFunction.cpp.

242{
243 if (Parameters.size() < _min) {
244 ostringstream buffer;
245 buffer << el->ReadFrom() << fgred << highint
246 << "<" << el->GetName() << "> should have at least " << _min
247 << " argument(s)." << reset << endl;
248 throw WrongNumberOfArguments(buffer.str(), Parameters, el);
249 }
250}

◆ CheckOddOrEvenArguments()

void CheckOddOrEvenArguments ( Element el,
OddEven  odd_even 
)
protected

Definition at line 267 of file FGFunction.cpp.

268{
269
270 switch(odd_even) {
271 case OddEven::Even:
272 if (Parameters.size() % 2 == 1) {
273 cerr << el->ReadFrom() << fgred << highint
274 << "<" << el->GetName() << "> must have an even number of arguments."
275 << reset << endl;
276 throw BaseException("Fatal Error");
277 }
278 break;
279 case OddEven::Odd:
280 if (Parameters.size() % 2 == 0) {
281 cerr << el->ReadFrom() << fgred << highint
282 << "<" << el->GetName() << "> must have an odd number of arguments."
283 << reset << endl;
284 throw BaseException("Fatal Error");
285 }
286 break;
287 default:
288 break;
289 }
290}

◆ CreateOutputNode()

string CreateOutputNode ( Element el,
const std::string &  Prefix 
)
protected

Definition at line 990 of file FGFunction.cpp.

991{
992 string nName;
993
994 if ( !Name.empty() ) {
995 if (Prefix.empty())
996 nName = PropertyManager->mkPropertyName(Name, false);
997 else {
998 if (is_number(Prefix)) {
999 if (Name.find("#") != string::npos) { // if "#" is found
1000 Name = replace(Name,"#",Prefix);
1001 nName = PropertyManager->mkPropertyName(Name, false);
1002 } else {
1003 cerr << el->ReadFrom()
1004 << "Malformed function name with number: " << Prefix
1005 << " and property name: " << Name
1006 << " but no \"#\" sign for substitution." << endl;
1007 }
1008 } else {
1009 nName = PropertyManager->mkPropertyName(Prefix + "/" + Name, false);
1010 }
1011 }
1012
1013 pNode = PropertyManager->GetNode(nName, true);
1014 if (pNode->isTied()) {
1015 cerr << el->ReadFrom()
1016 << "Property " << nName << " has already been successfully bound (late)." << endl;
1017 throw BaseException("Failed to bind the property to an existing already tied node.");
1018 }
1019 }
1020
1021 return nName;
1022}

◆ GetName()

std::string GetName ( void  ) const
inlineoverridevirtual

Retrieves the name of the function.

Implements FGParameter.

Definition at line 809 of file FGFunction.h.

809{return Name;}

◆ GetValue()

double GetValue ( void  ) const
overridevirtual

Retrieves the value of the function object.

Returns
the total value of the function.

Implements FGParameter.

Definition at line 967 of file FGFunction.cpp.

968{
969 if (cached) return cachedValue;
970
971 double val = Parameters[0]->GetValue();
972
973 if (pCopyTo) pCopyTo->setDoubleValue(val);
974
975 return val;
976}
+ Here is the caller graph for this function:

◆ GetValueAsString()

string GetValueAsString ( void  ) const

The value that the function evaluates to, as a string.

Returns
the value of the function as a string.

Definition at line 980 of file FGFunction.cpp.

981{
982 ostringstream buffer;
983
984 buffer << setw(9) << setprecision(6) << GetValue();
985 return buffer.str();
986}
+ Here is the call graph for this function:

◆ IsConstant()

bool IsConstant ( void  ) const
overridevirtual

Does the function always return the same result (i.e.

does it apply to constant parameters) ?

Reimplemented from FGParameter.

Definition at line 943 of file FGFunction.cpp.

944{
945 for (auto p: Parameters) {
946 if (!p->IsConstant())
947 return false;
948 }
949
950 return true;
951}

◆ Load()

void Load ( Element element,
FGPropertyValue var,
FGFDMExec fdmex,
const std::string &  prefix = "" 
)
protected

Definition at line 309 of file FGFunction.cpp.

311{
312 Name = el->GetAttributeValue("name");
313 Element* element = el->GetElement();
314
315 auto sum = [](const decltype(Parameters)& Parameters)->double {
316 double temp = 0.0;
317
318 for (auto p: Parameters)
319 temp += p->GetValue();
320
321 return temp;
322 };
323
324 while (element) {
325 string operation = element->GetName();
326
327 // data types
328 if (operation == "property" || operation == "p") {
329 string property_name = element->GetDataLine();
330
331 if (var && simgear::strutils::strip(property_name) == "#")
332 Parameters.push_back(var);
333 else {
334 if (property_name.find("#") != string::npos) {
335 if (is_number(Prefix)) {
336 property_name = replace(property_name,"#",Prefix);
337 }
338 else {
339 cerr << element->ReadFrom()
340 << fgred << "Illegal use of the special character '#'"
341 << reset << endl;
342 throw BaseException("Fatal Error.");
343 }
344 }
345
346 if (element->HasAttribute("apply")) {
347 string function_str = element->GetAttributeValue("apply");
348 auto f = fdmex->GetTemplateFunc(function_str);
349 if (f)
350 Parameters.push_back(new FGFunctionValue(property_name,
351 PropertyManager, f, element));
352 else {
353 cerr << element->ReadFrom()
354 << fgred << highint << " No function by the name "
355 << function_str << " has been defined. This property will "
356 << "not be logged. You should check your configuration file."
357 << reset << endl;
358 }
359 }
360 else
361 Parameters.push_back(new FGPropertyValue(property_name,
362 PropertyManager, element));
363 }
364 } else if (operation == "value" || operation == "v") {
365 Parameters.push_back(new FGRealValue(element->GetDataAsNumber()));
366 } else if (operation == "pi") {
367 Parameters.push_back(new FGRealValue(M_PI));
368 } else if (operation == "table" || operation == "t") {
369 string call_type = element->GetAttributeValue("type");
370 if (call_type == "internal") {
371 std::cerr << el->ReadFrom()
372 << "An internal table cannot be nested within a function."
373 << endl;
374 throw BaseException("An internal table cannot be nested within a function.");
375 }
376 Parameters.push_back(new FGTable(PropertyManager, element, Prefix));
377 // operations
378 } else if (operation == "product") {
379 auto f = [](const decltype(Parameters)& Parameters)->double {
380 double temp = 1.0;
381
382 for (auto p: Parameters)
383 temp *= p->GetValue();
384
385 return temp;
386 };
387 Parameters.push_back(VarArgsFn<decltype(f)>(f, fdmex, element, Prefix, var));
388 } else if (operation == "sum") {
389 Parameters.push_back(VarArgsFn<decltype(sum)>(sum, fdmex, element, Prefix, var));
390 } else if (operation == "avg") {
391 auto avg = [&](const decltype(Parameters)& p)->double {
392 return sum(p) / p.size();
393 };
394 Parameters.push_back(VarArgsFn<decltype(avg)>(avg, fdmex, element, Prefix, var));
395 } else if (operation == "difference") {
396 auto f = [](const decltype(Parameters)& Parameters)->double {
397 double temp = Parameters[0]->GetValue();
398
399 for (auto p = Parameters.begin()+1; p != Parameters.end(); ++p)
400 temp -= (*p)->GetValue();
401
402 return temp;
403 };
404 Parameters.push_back(VarArgsFn<decltype(f)>(f, fdmex, element, Prefix, var));
405 } else if (operation == "min") {
406 auto f = [](const decltype(Parameters)& Parameters)->double {
407 double _min = HUGE_VAL;
408
409 for (auto p : Parameters) {
410 double x = p->GetValue();
411 if (x < _min)
412 _min = x;
413 }
414
415 return _min;
416 };
417 Parameters.push_back(VarArgsFn<decltype(f)>(f, fdmex, element, Prefix, var));
418 } else if (operation == "max") {
419 auto f = [](const decltype(Parameters)& Parameters)->double {
420 double _max = -HUGE_VAL;
421
422 for (auto p : Parameters) {
423 double x = p->GetValue();
424 if (x > _max)
425 _max = x;
426 }
427
428 return _max;
429 };
430 Parameters.push_back(VarArgsFn<decltype(f)>(f, fdmex, element, Prefix, var));
431 } else if (operation == "and") {
432 string ctxMsg = element->ReadFrom();
433 auto f = [ctxMsg](const decltype(Parameters)& Parameters)->double {
434 for (auto p : Parameters) {
435 if (!GetBinary(p->GetValue(), ctxMsg)) // As soon as one parameter is false, the expression is guaranteed to be false.
436 return 0.0;
437 }
438
439 return 1.0;
440 };
441 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix,
442 var, MaxArgs));
443 } else if (operation == "or") {
444 string ctxMsg = element->ReadFrom();
445 auto f = [ctxMsg](const decltype(Parameters)& Parameters)->double {
446 for (auto p : Parameters) {
447 if (GetBinary(p->GetValue(), ctxMsg)) // As soon as one parameter is true, the expression is guaranteed to be true.
448 return 1.0;
449 }
450
451 return 0.0;
452 };
453 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix,
454 var, MaxArgs));
455 } else if (operation == "quotient") {
456 auto f = [](const decltype(Parameters)& p)->double {
457 double y = p[1]->GetValue();
458 return y != 0.0 ? p[0]->GetValue()/y : HUGE_VAL;
459 };
460 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
461 } else if (operation == "pow") {
462 auto f = [](const decltype(Parameters)& p)->double {
463 return pow(p[0]->GetValue(), p[1]->GetValue());
464 };
465 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
466 } else if (operation == "toradians") {
467 auto f = [](const decltype(Parameters)& p)->double {
468 return p[0]->GetValue()*M_PI/180.;
469 };
470 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
471 } else if (operation == "todegrees") {
472 auto f = [](const decltype(Parameters)& p)->double {
473 return p[0]->GetValue()*180./M_PI;
474 };
475 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
476 } else if (operation == "sqrt") {
477 auto f = [](const decltype(Parameters)& p)->double {
478 double x = p[0]->GetValue();
479 return x >= 0.0 ? sqrt(x) : -HUGE_VAL;
480 };
481 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
482 } else if (operation == "log2") {
483 auto f = [](const decltype(Parameters)& p)->double {
484 double x = p[0]->GetValue();
485 return x > 0.0 ? log10(x)*invlog2val : -HUGE_VAL;
486 };
487 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
488 } else if (operation == "ln") {
489 auto f = [](const decltype(Parameters)& p)->double {
490 double x = p[0]->GetValue();
491 return x > 0.0 ? log(x) : -HUGE_VAL;
492 };
493 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
494 } else if (operation == "log10") {
495 auto f = [](const decltype(Parameters)& p)->double {
496 double x = p[0]->GetValue();
497 return x > 0.0 ? log10(x) : -HUGE_VAL;
498 };
499 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
500 } else if (operation == "sign") {
501 auto f = [](const decltype(Parameters)& p)->double {
502 return p[0]->GetValue() < 0.0 ? -1 : 1; // 0.0 counts as positive.
503 };
504 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
505 } else if (operation == "exp") {
506 Parameters.push_back(make_MathFn(exp, fdmex, element, Prefix, var));
507 } else if (operation == "abs") {
508 Parameters.push_back(make_MathFn(fabs, fdmex, element, Prefix, var));
509 } else if (operation == "sin") {
510 Parameters.push_back(make_MathFn(sin, fdmex, element, Prefix, var));
511 } else if (operation == "cos") {
512 Parameters.push_back(make_MathFn(cos, fdmex, element, Prefix, var));
513 } else if (operation == "tan") {
514 Parameters.push_back(make_MathFn(tan, fdmex, element, Prefix, var));
515 } else if (operation == "asin") {
516 Parameters.push_back(make_MathFn(asin, fdmex, element, Prefix, var));
517 } else if (operation == "acos") {
518 Parameters.push_back(make_MathFn(acos, fdmex, element, Prefix, var));
519 } else if (operation == "atan") {
520 Parameters.push_back(make_MathFn(atan, fdmex, element, Prefix, var));
521 } else if (operation == "floor") {
522 Parameters.push_back(make_MathFn(floor, fdmex, element, Prefix, var));
523 } else if (operation == "ceil") {
524 Parameters.push_back(make_MathFn(ceil, fdmex, element, Prefix, var));
525 } else if (operation == "fmod") {
526 auto f = [](const decltype(Parameters)& p)->double {
527 double y = p[1]->GetValue();
528 return y != 0.0 ? fmod(p[0]->GetValue(), y) : HUGE_VAL;
529 };
530 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
531 } else if (operation == "roundmultiple") {
532 if (element->GetNumElements() == 1)
533 Parameters.push_back(make_MathFn(round, fdmex, element, Prefix, var));
534 else {
535 auto f = [](const decltype(Parameters)& p)->double {
536 double multiple = p[1]->GetValue();
537 return round((p[0]->GetValue() / multiple)) * multiple;
538 };
539 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var, 2));
540 }
541 } else if (operation == "atan2") {
542 auto f = [](const decltype(Parameters)& p)->double {
543 return atan2(p[0]->GetValue(), p[1]->GetValue());
544 };
545 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
546 } else if (operation == "mod") {
547 auto f = [](const decltype(Parameters)& p)->double {
548 return static_cast<int>(p[0]->GetValue()) % static_cast<int>(p[1]->GetValue());
549 };
550 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
551 } else if (operation == "fraction") {
552 auto f = [](const decltype(Parameters)& p)->double {
553 double scratch;
554 return modf(p[0]->GetValue(), &scratch);
555 };
556 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
557 } else if (operation == "integer") {
558 auto f = [](const decltype(Parameters)& p)->double {
559 double result;
560 modf(p[0]->GetValue(), &result);
561 return result;
562 };
563 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
564 } else if (operation == "lt") {
565 auto f = [](const decltype(Parameters)& p)->double {
566 return p[0]->GetValue() < p[1]->GetValue() ? 1.0 : 0.0;
567 };
568 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
569 } else if (operation == "le") {
570 auto f = [](const decltype(Parameters)& p)->double {
571 return p[0]->GetValue() <= p[1]->GetValue() ? 1.0 : 0.0;
572 };
573 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
574 } else if (operation == "gt") {
575 auto f = [](const decltype(Parameters)& p)->double {
576 return p[0]->GetValue() > p[1]->GetValue() ? 1.0 : 0.0;
577 };
578 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
579 } else if (operation == "ge") {
580 auto f = [](const decltype(Parameters)& p)->double {
581 return p[0]->GetValue() >= p[1]->GetValue() ? 1.0 : 0.0;
582 };
583 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
584 } else if (operation == "eq") {
585 auto f = [](const decltype(Parameters)& p)->double {
586 return p[0]->GetValue() == p[1]->GetValue() ? 1.0 : 0.0;
587 };
588 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
589 } else if (operation == "nq") {
590 auto f = [](const decltype(Parameters)& p)->double {
591 return p[0]->GetValue() != p[1]->GetValue() ? 1.0 : 0.0;
592 };
593 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix, var));
594 } else if (operation == "not") {
595 string ctxMsg = element->ReadFrom();
596 auto f = [ctxMsg](const decltype(Parameters)& p)->double {
597 return GetBinary(p[0]->GetValue(), ctxMsg) ? 0.0 : 1.0;
598 };
599 Parameters.push_back(new aFunc<decltype(f), 1>(f, fdmex, element, Prefix, var));
600 } else if (operation == "ifthen") {
601 string ctxMsg = element->ReadFrom();
602 auto f = [ctxMsg](const decltype(Parameters)& p)->double {
603 if (GetBinary(p[0]->GetValue(), ctxMsg))
604 return p[1]->GetValue();
605 else
606 return p[2]->GetValue();
607 };
608 Parameters.push_back(new aFunc<decltype(f), 3>(f, fdmex, element, Prefix, var));
609 } else if (operation == "random") {
610 double mean = 0.0;
611 double stddev = 1.0;
612 string mean_attr = element->GetAttributeValue("mean");
613 string stddev_attr = element->GetAttributeValue("stddev");
614 if (!mean_attr.empty()) {
615 try {
616 mean = atof_locale_c(mean_attr);
617 } catch (InvalidNumber& e) {
618 cerr << element->ReadFrom() << e.what() << endl;
619 throw e;
620 }
621 }
622 if (!stddev_attr.empty()) {
623 try {
624 stddev = atof_locale_c(stddev_attr);
625 } catch (InvalidNumber& e) {
626 cerr << element->ReadFrom() << e.what() << endl;
627 throw e;
628 }
629 }
630 auto generator(makeRandomGenerator(element, fdmex));
631 auto f = [generator, mean, stddev]()->double {
632 double value = generator->GetNormalRandomNumber();
633 return value*stddev + mean;
634 };
635 Parameters.push_back(new aFunc<decltype(f), 0>(f, PropertyManager, element,
636 Prefix));
637 } else if (operation == "urandom") {
638 double lower = -1.0;
639 double upper = 1.0;
640 string lower_attr = element->GetAttributeValue("lower");
641 string upper_attr = element->GetAttributeValue("upper");
642 if (!lower_attr.empty()) {
643 try {
644 lower = atof_locale_c(lower_attr);
645 } catch (InvalidNumber &e) {
646 cerr << element->ReadFrom() << e.what() << endl;
647 throw e;
648 }
649 }
650 if (!upper_attr.empty()) {
651 try {
652 upper = atof_locale_c(upper_attr);
653 } catch (InvalidNumber &e) {
654 cerr << element->ReadFrom() << e.what() << endl;
655 throw e;
656 }
657 }
658 auto generator(makeRandomGenerator(element, fdmex));
659 double a = 0.5*(upper-lower);
660 double b = 0.5*(upper+lower);
661 auto f = [generator, a, b]()->double {
662 double value = generator->GetUniformRandomNumber();
663 return value*a + b;
664 };
665 Parameters.push_back(new aFunc<decltype(f), 0>(f, PropertyManager, element,
666 Prefix));
667 } else if (operation == "switch") {
668 string ctxMsg = element->ReadFrom();
669 auto f = [ctxMsg](const decltype(Parameters)& p)->double {
670 double temp = p[0]->GetValue();
671 if (temp < 0.0) {
672 cerr << ctxMsg << fgred << highint
673 << "The switch function index (" << temp
674 << ") is negative." << reset << endl;
675 throw BaseException("Fatal error");
676 }
677 size_t n = p.size()-1;
678 size_t i = static_cast<size_t>(temp+0.5);
679
680 if (i < n)
681 return p[i+1]->GetValue();
682 else {
683 cerr << ctxMsg << fgred << highint
684 << "The switch function index (" << temp
685 << ") selected a value above the range of supplied values"
686 << "[0:" << n-1 << "]"
687 << " - not enough values were supplied." << reset << endl;
688 throw BaseException("Fatal error");
689 }
690 };
691 Parameters.push_back(new aFunc<decltype(f), 2>(f, fdmex, element, Prefix,
692 var, MaxArgs));
693 } else if (operation == "interpolate1d") {
694 auto f = [](const decltype(Parameters)& p)->double {
695 // This is using the bisection algorithm. Special care has been
696 // taken to evaluate each parameter only once.
697 size_t n = p.size();
698 double x = p[0]->GetValue();
699 double xmin = p[1]->GetValue();
700 double ymin = p[2]->GetValue();
701 if (x <= xmin) return ymin;
702
703 double xmax = p[n-2]->GetValue();
704 double ymax = p[n-1]->GetValue();
705 if (x >= xmax) return ymax;
706
707 size_t nmin = 0;
708 size_t nmax = (n-3)/2;
709 while (nmax-nmin > 1) {
710 size_t m = (nmax-nmin)/2+nmin;
711 double xm = p[2*m+1]->GetValue();
712 double ym = p[2*m+2]->GetValue();
713 if (x < xm) {
714 xmax = xm;
715 ymax = ym;
716 nmax= m;
717 } else if (x > xm) {
718 xmin = xm;
719 ymin = ym;
720 nmin = m;
721 }
722 else
723 return ym;
724 }
725
726 return ymin + (x-xmin)*(ymax-ymin)/(xmax-xmin);
727 };
728 Parameters.push_back(new aFunc<decltype(f), 5>(f, fdmex, element, Prefix,
729 var, MaxArgs, OddEven::Odd));
730 } else if (operation == "rotation_alpha_local") {
731 // Calculates local angle of attack for skydiver body component.
732 // Euler angles from the intermediate body frame to the local body frame
733 // must be from a z-y-x axis rotation order
734 auto f = [](const decltype(Parameters)& p)->double {
735 double alpha = p[0]->GetValue()*degtorad; //angle of attack of intermediate body frame
736 double beta = p[1]->GetValue()*degtorad; //sideslip angle of intermediate body frame
737 double phi = p[3]->GetValue()*degtorad; //x-axis Euler angle from the intermediate body frame to the local body frame
738 double theta = p[4]->GetValue()*degtorad; //y-axis Euler angle from the intermediate body frame to the local body frame
739 double psi = p[5]->GetValue()*degtorad; //z-axis Euler angle from the intermediate body frame to the local body frame
740
741 FGQuaternion qTb2l(phi, theta, psi);
742 double cos_beta = cos(beta);
743 FGColumnVector3 wind_body(cos(alpha)*cos_beta, sin(beta),
744 sin(alpha)*cos_beta);
745 FGColumnVector3 wind_local = qTb2l.GetT()*wind_body;
746
747 if (fabs(fabs(wind_local(eY)) - 1.0) < 1E-9)
748 return 0.0;
749 else
750 return atan2(wind_local(eZ), wind_local(eX))*radtodeg;
751 };
752 Parameters.push_back(new aFunc<decltype(f), 6>(f, fdmex, element, Prefix, var));
753 } else if (operation == "rotation_beta_local") {
754 // Calculates local angle of sideslip for skydiver body component.
755 // Euler angles from the intermediate body frame to the local body frame
756 // must be from a z-y-x axis rotation order
757 auto f = [](const decltype(Parameters)& p)->double {
758 double alpha = p[0]->GetValue()*degtorad; //angle of attack of intermediate body frame
759 double beta = p[1]->GetValue()*degtorad; //sideslip angle of intermediate body frame
760 double phi = p[3]->GetValue()*degtorad; //x-axis Euler angle from the intermediate body frame to the local body frame
761 double theta = p[4]->GetValue()*degtorad; //y-axis Euler angle from the intermediate body frame to the local body frame
762 double psi = p[5]->GetValue()*degtorad; //z-axis Euler angle from the intermediate body frame to the local body frame
763 FGQuaternion qTb2l(phi, theta, psi);
764 double cos_beta = cos(beta);
765 FGColumnVector3 wind_body(cos(alpha)*cos_beta, sin(beta),
766 sin(alpha)*cos_beta);
767 FGColumnVector3 wind_local = qTb2l.GetT()*wind_body;
768
769 if (fabs(fabs(wind_local(eY)) - 1.0) < 1E-9)
770 return wind_local(eY) > 0.0 ? 0.5*M_PI : -0.5*M_PI;
771
772 double alpha_local = atan2(wind_local(eZ), wind_local(eX));
773 double cosa = cos(alpha_local);
774 double sina = sin(alpha_local);
775 double cosb;
776
777 if (fabs(cosa) > fabs(sina))
778 cosb = wind_local(eX) / cosa;
779 else
780 cosb = wind_local(eZ) / sina;
781
782 return atan2(wind_local(eY), cosb)*radtodeg;
783 };
784 Parameters.push_back(new aFunc<decltype(f), 6>(f, fdmex, element, Prefix, var));
785 } else if (operation == "rotation_gamma_local") {
786 // Calculates local roll angle for skydiver body component.
787 // Euler angles from the intermediate body frame to the local body frame
788 // must be from a z-y-x axis rotation order
789 auto f = [](const decltype(Parameters)& p)->double {
790 double alpha = p[0]->GetValue()*degtorad; //angle of attack of intermediate body frame
791 double beta = p[1]->GetValue()*degtorad; //sideslip angle of intermediate body frame
792 double gamma = p[2]->GetValue()*degtorad; //roll angle of intermediate body frame
793 double phi = p[3]->GetValue()*degtorad; //x-axis Euler angle from the intermediate body frame to the local body frame
794 double theta = p[4]->GetValue()*degtorad; //y-axis Euler angle from the intermediate body frame to the local body frame
795 double psi = p[5]->GetValue()*degtorad; //z-axis Euler angle from the intermediate body frame to the local body frame
796 double cos_alpha = cos(alpha), sin_alpha = sin(alpha);
797 double cos_beta = cos(beta), sin_beta = sin(beta);
798 double cos_gamma = cos(gamma), sin_gamma = sin(gamma);
799 FGQuaternion qTb2l(phi, theta, psi);
800 FGColumnVector3 wind_body_X(cos_alpha*cos_beta, sin_beta,
801 sin_alpha*cos_beta);
802 FGColumnVector3 wind_body_Y(-sin_alpha*sin_gamma-sin_beta*cos_alpha*cos_gamma,
803 cos_beta*cos_gamma,
804 -sin_alpha*sin_beta*cos_gamma+sin_gamma*cos_alpha);
805 FGColumnVector3 wind_local_X = qTb2l.GetT()*wind_body_X;
806 FGColumnVector3 wind_local_Y = qTb2l.GetT()*wind_body_Y;
807 double cosacosb = wind_local_X(eX);
808 double sinb = wind_local_X(eY);
809 double sinacosb = wind_local_X(eZ);
810 double sinc, cosc;
811
812 if (fabs(sinb) < 1E-9) { // cos(beta_local) == 1.0
813 cosc = wind_local_Y(eY);
814
815 if (fabs(cosacosb) > fabs(sinacosb))
816 sinc = wind_local_Y(eZ) / cosacosb;
817 else
818 sinc = -wind_local_Y(eX) / sinacosb;
819 }
820 else if (fabs(fabs(sinb)-1.0) < 1E-9) { // cos(beta_local) == 0.0
821 sinc = wind_local_Y(eZ);
822 cosc = -wind_local_Y(eX);
823 }
824 else {
825 sinc = cosacosb*wind_local_Y(eZ)-sinacosb*wind_local_Y(eX);
826 cosc = (-sinacosb*wind_local_Y(eZ)-cosacosb*wind_local_Y(eX))/sinb;
827 }
828
829 return atan2(sinc, cosc)*radtodeg;
830 };
831 Parameters.push_back(new aFunc<decltype(f), 6>(f, fdmex, element, Prefix, var));
832 } else if (operation == "rotation_bf_to_wf") {
833 // Transforms the input vector from a body frame to a wind frame. The
834 // origin of the vector remains the same.
835 string ctxMsg = element->ReadFrom();
836 auto f = [ctxMsg](const decltype(Parameters)& p)->double {
837 double rx = p[0]->GetValue(); //x component of input vector
838 double ry = p[1]->GetValue(); //y component of input vector
839 double rz = p[2]->GetValue(); //z component of input vector
840 double alpha = p[3]->GetValue()*degtorad; //angle of attack of the body frame
841 double beta = p[4]->GetValue()*degtorad; //sideslip angle of the body frame
842 double gamma = p[5]->GetValue()*degtorad; //roll angle of the body frame
843 int idx = static_cast<int>(p[6]->GetValue());
844
845 if ((idx < 1) || (idx > 3)) {
846 cerr << ctxMsg << fgred << highint
847 << "The index must be one of the integer value 1, 2 or 3."
848 << reset << endl;
849 throw BaseException("Fatal error");
850 }
851
852 FGQuaternion qa(eY, -alpha), qb(eZ, beta), qc(eX, -gamma);
853 FGMatrix33 mT = (qa*qb*qc).GetT();
854 FGColumnVector3 r0(rx, ry, rz);
855 FGColumnVector3 r = mT*r0;
856
857 return r(idx);
858 };
859 Parameters.push_back(new aFunc<decltype(f), 7>(f, fdmex, element, Prefix, var));
860 } else if (operation == "rotation_wf_to_bf") {
861 // Transforms the input vector from q wind frame to a body frame. The
862 // origin of the vector remains the same.
863 string ctxMsg = element->ReadFrom();
864 auto f = [ctxMsg](const decltype(Parameters)& p)->double {
865 double rx = p[0]->GetValue(); //x component of input vector
866 double ry = p[1]->GetValue(); //y component of input vector
867 double rz = p[2]->GetValue(); //z component of input vector
868 double alpha = p[3]->GetValue()*degtorad; //angle of attack of the body frame
869 double beta = p[4]->GetValue()*degtorad; //sideslip angle of the body frame
870 double gamma = p[5]->GetValue()*degtorad; //roll angle of the body frame
871 int idx = static_cast<int>(p[6]->GetValue());
872
873 if ((idx < 1) || (idx > 3)) {
874 cerr << ctxMsg << fgred << highint
875 << "The index must be one of the integer value 1, 2 or 3."
876 << reset << endl;
877 throw BaseException("Fatal error");
878 }
879
880 FGQuaternion qa(eY, -alpha), qb(eZ, beta), qc(eX, -gamma);
881 FGMatrix33 mT = (qa*qb*qc).GetT();
882 FGColumnVector3 r0(rx, ry, rz);
883 mT.T();
884 FGColumnVector3 r = mT*r0;
885
886 return r(idx);
887 };
888 Parameters.push_back(new aFunc<decltype(f), 7>(f, fdmex, element, Prefix, var));
889 } else if (operation != "description") {
890 cerr << element->ReadFrom() << fgred << highint
891 << "Bad operation <" << operation
892 << "> detected in configuration file" << reset << endl;
893 }
894
895 // Optimize functions applied on constant parameters by replacing them by
896 // their constant result.
897 if (!Parameters.empty()){
898 FGFunction* p = dynamic_cast<FGFunction*>(Parameters.back().ptr());
899
900 if (p && p->IsConstant()) {
901 double constant = p->GetValue();
902 FGPropertyNode_ptr node = p->pNode;
903 string pName = p->GetName();
904
905 Parameters.pop_back();
906 Parameters.push_back(new FGRealValue(constant));
907 if (debug_lvl > 0)
908 cout << element->ReadFrom() << fggreen << highint
909 << "<" << operation << "> is applied on constant parameters."
910 << endl << "It will be replaced by its result ("
911 << constant << ")";
912
913 if (node) {
914 node->setDoubleValue(constant);
915 node->setAttribute(SGPropertyNode::WRITE, false);
916 if (debug_lvl > 0)
917 cout << " and the property " << pName
918 << " will be unbound and made read only.";
919 }
920 cout << reset << endl << endl;
921 }
922 }
923 element = el->GetNextElement();
924 }
925
926 bind(el, Prefix); // Allow any function to save its value
927
928 Debug(0);
929}
static char fggreen[6]
green text
Definition FGJSBBase.h:168

Member Data Documentation

◆ cached

bool cached
protected

Definition at line 828 of file FGFunction.h.

◆ cachedValue

double cachedValue
protected

Definition at line 829 of file FGFunction.h.

◆ Parameters

std::vector<FGParameter_ptr> Parameters
protected

Definition at line 830 of file FGFunction.h.

◆ pNode

FGPropertyNode_ptr pNode
protected

Definition at line 832 of file FGFunction.h.

◆ PropertyManager

std::shared_ptr<FGPropertyManager> PropertyManager
protected

Definition at line 831 of file FGFunction.h.


The documentation for this class was generated from the following files: