JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGTrim Class Reference

Detailed Description

The trimming routine for JSBSim.

FGTrim finds the aircraft attitude and control settings needed to maintain the steady state described by the FGInitialCondition object . It does this iteratively by assigning a control to each state and adjusting that control until the state is within a specified tolerance of zero. States include the recti-linear accelerations udot, vdot, and wdot, the angular accelerations qdot, pdot, and rdot, and the difference between heading and ground track. Controls include the usual flight deck controls available to the pilot plus angle of attack (alpha), sideslip angle(beta), flight path angle (gamma), pitch attitude(theta), roll attitude(phi), and altitude above ground. The last three are used for on-ground trimming. The state-control pairs used in a given trim are completely user configurable and several pre-defined modes are provided as well. They are:

  • tLongitudinal: Trim wdot with alpha, udot with thrust, qdot with elevator
  • tFull: tLongitudinal + vdot with phi, pdot with aileron, rdot with rudder and heading minus ground track (hmgt) with beta
  • tPullup: tLongitudinal but adjust alpha to achieve load factor input with SetTargetNlf()
  • tGround: wdot with altitude, qdot with theta, and pdot with phi

The remaining modes include tCustom, which is completely user defined and tNone.

Note that trims can (and do) fail for reasons that are completely outside the control of the trimming routine itself. The most common problem is the initial conditions: is the model capable of steady state flight at those conditions? Check the speed, altitude, configuration (flaps, gear, etc.), weight, cg, and anything else that may be relevant.

Example usage:

FGFDMExec* FDMExec = new FGFDMExec();
FGTrim fgt(FDMExec, fgic, tFull);
fgic->SetVcaibratedKtsIC(100);
fgic->SetAltitudeFtIC(1000);
fgic->SetClimbRate(500);
if( !fgt.DoTrim() ) {
std::cout << "Trim Failed" << std::endl;
}
fgt.Report();
Encapsulates the JSBSim simulation executive.
Definition FGFDMExec.h:184
Initializes the simulation run.
The trimming routine for JSBSim.
Definition FGTrim.h:126
Author
Tony Peden

Definition at line 125 of file FGTrim.h.

#include <FGTrim.h>

+ Inheritance diagram for FGTrim:
+ Collaboration diagram for FGTrim:

Public Member Functions

 FGTrim (FGFDMExec *FDMExec, TrimMode tm=tGround)
 Initializes the trimming class.
 
bool AddState (State state, Control control)
 Add a state-control pair to the current configuration.
 
void ClearDebug (void)
 
void ClearStates (void)
 Clear all state-control pairs from the current configuration.
 
void DebugState (State state)
 Output debug data for one of the axes The State enum is defined in FGTrimAxis.h.
 
bool DoTrim (void)
 Execute the trim.
 
bool EditState (State state, Control new_control)
 Change the control used to zero a state previously configured.
 
bool GetGammaFallback (void)
 query the fallback state
 
double GetTargetNlf (void)
 
bool RemoveState (State state)
 Remove a specific state-control pair from the current configuration.
 
void Report (void)
 Print the results of the trim.
 
void SetDebug (int level)
 Debug level 1 shows results of each top-level iteration Debug level 2 shows level 1 & results of each per-axis iteration.
 
void SetGammaFallback (bool bb)
 automatically switch to trimming longitudinal acceleration with flight path angle (gamma) once it becomes apparent that there is not enough/too much thrust.
 
void SetMaxCycles (int ii)
 Set the iteration limit.
 
void SetMaxCyclesPerAxis (int ii)
 Set the per-axis iteration limit.
 
void SetMode (TrimMode tm)
 Clear all state-control pairs and set a predefined trim mode.
 
void SetTargetNlf (double nlf)
 
void SetTolerance (double tt)
 Set the tolerance for declaring a state trimmed.
 
void TrimStats ()
 Iteration statistics.
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Additional Inherited Members

- Public Types inherited from FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 
- Static Public Member Functions inherited from FGJSBBase
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
- Static Public Attributes inherited from FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Static Protected Attributes inherited from FGJSBBase
static constexpr double radtodeg = 180. / M_PI
 
static constexpr double degtorad = M_PI / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double fttom = 0.3048
 
static constexpr double ktstofps = 1852./(3600*fttom)
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 

Constructor & Destructor Documentation

◆ FGTrim()

FGTrim ( FGFDMExec FDMExec,
TrimMode  tm = tGround 
)

Initializes the trimming class.

Parameters
FDMExecpointer to a JSBSim executive object.
tmtrim mode

Definition at line 61 of file FGTrim.cpp.

62 : fgic(FDMExec)
63{
64
65 Nsub=0;
66 max_iterations=60;
67 max_sub_iterations=100;
68 Tolerance=1E-3;
69 A_Tolerance = Tolerance / 10;
70
71 Debug=0;DebugLevel=0;
72 fdmex=FDMExec;
73 fgic = *fdmex->GetIC();
74 total_its=0;
75 gamma_fallback=false;
76 mode=tt;
77 xlo=xhi=alo=ahi=0.0;
78 targetNlf=fgic.GetTargetNlfIC();
79 debug_axis=tAll;
80 SetMode(tt);
81 if (debug_lvl & 2) cout << "Instantiated: FGTrim" << endl;
82}
std::shared_ptr< FGInitialCondition > GetIC(void) const
Returns a pointer to the FGInitialCondition object.
Definition FGFDMExec.h:389
double GetTargetNlfIC(void) const
Gets the target normal load factor set from IC.
void SetMode(TrimMode tm)
Clear all state-control pairs and set a predefined trim mode.
Definition FGTrim.cpp:801
+ Here is the call graph for this function:

◆ ~FGTrim()

~FGTrim ( void  )

Definition at line 86 of file FGTrim.cpp.

86 {
87 if (debug_lvl & 2) cout << "Destroyed: FGTrim" << endl;
88}

Member Function Documentation

◆ AddState()

bool AddState ( State  state,
Control  control 
)

Add a state-control pair to the current configuration.

See the enums State and Control in FGTrimAxis.h for the available options. Will fail if the given state is already configured.

Parameters
statethe accel or other condition to zero
controlthe control used to zero the state
Returns
true if add is successful

Definition at line 130 of file FGTrim.cpp.

130 {
131 mode = tCustom;
132 vector <FGTrimAxis>::iterator iAxes = TrimAxes.begin();
133 for (; iAxes != TrimAxes.end(); ++iAxes) {
134 if (iAxes->GetStateType() == state)
135 return false;
136 }
137
138 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,state,control));
139 sub_iterations.resize(TrimAxes.size());
140 successful.resize(TrimAxes.size());
141 solution.resize(TrimAxes.size());
142
143 return true;
144}

◆ ClearDebug()

void ClearDebug ( void  )
inline

Definition at line 280 of file FGTrim.h.

280{ DebugLevel = 0; }

◆ ClearStates()

void ClearStates ( void  )

Clear all state-control pairs from the current configuration.

The trimming routine must have at least one state-control pair configured to be useful

Definition at line 122 of file FGTrim.cpp.

122 {
123 mode=tCustom;
124 TrimAxes.clear();
125 //cout << "TrimAxes.size(): " << TrimAxes.size() << endl;
126}
+ Here is the caller graph for this function:

◆ DebugState()

void DebugState ( State  state)
inline

Output debug data for one of the axes The State enum is defined in FGTrimAxis.h.

Definition at line 286 of file FGTrim.h.

286{ debug_axis=state; }

◆ DoTrim()

bool DoTrim ( void  )

Execute the trim.

Definition at line 186 of file FGTrim.cpp.

186 {
187 bool trim_failed=false;
188 unsigned int N = 0;
189 unsigned int axis_count = 0;
190 auto FCS = fdmex->GetFCS();
191 auto GroundReactions = fdmex->GetGroundReactions();
192 vector<double> throttle0 = FCS->GetThrottleCmd();
193 double elevator0 = FCS->GetDeCmd();
194 double aileron0 = FCS->GetDaCmd();
195 double rudder0 = FCS->GetDrCmd();
196 double PitchTrim0 = FCS->GetPitchTrimCmd();
197
198 for(int i=0;i < GroundReactions->GetNumGearUnits();i++)
199 GroundReactions->GetGearUnit(i)->SetReport(false);
200
201 fdmex->SetTrimStatus(true);
202 fdmex->SuspendIntegration();
203
204 fgic.SetPRadpsIC(0.0);
205 fgic.SetQRadpsIC(0.0);
206 fgic.SetRRadpsIC(0.0);
207
208 if (mode == tGround) {
209 fdmex->Initialize(&fgic);
210 fdmex->Run();
211 trimOnGround();
212 double theta = fgic.GetThetaRadIC();
213 double phi = fgic.GetPhiRadIC();
214 // Take opportunity of the first approx. found by trimOnGround() to
215 // refine the control limits.
216 TrimAxes[0].SetControlLimits(0., fgic.GetAltitudeAGLFtIC());
217 TrimAxes[1].SetControlLimits(theta - 5.0 * degtorad, theta + 5.0 * degtorad);
218 TrimAxes[2].SetControlLimits(phi - 30.0 * degtorad, phi + 30.0 * degtorad);
219 }
220
221 //clear the sub iterations counts & zero out the controls
222 for(unsigned int current_axis=0;current_axis<TrimAxes.size();current_axis++) {
223 //cout << current_axis << " " << TrimAxes[current_axis]->GetStateName()
224 //<< " " << TrimAxes[current_axis]->GetControlName()<< endl;
225 xlo=TrimAxes[current_axis].GetControlMin();
226 xhi=TrimAxes[current_axis].GetControlMax();
227 TrimAxes[current_axis].SetControl((xlo+xhi)/2);
228 TrimAxes[current_axis].Run();
229 //TrimAxes[current_axis].AxisReport();
230 sub_iterations[current_axis]=0;
231 successful[current_axis]=0;
232 solution[current_axis]=false;
233 }
234
235 if(mode == tPullup ) {
236 cout << "Setting pitch rate and nlf... " << endl;
237 setupPullup();
238 cout << "pitch rate done ... " << endl;
239 TrimAxes[0].SetStateTarget(targetNlf);
240 cout << "nlf done" << endl;
241 } else if (mode == tTurn) {
242 setupTurn();
243 //TrimAxes[0].SetStateTarget(targetNlf);
244 }
245
246 do {
247 axis_count=0;
248 for(unsigned int current_axis=0;current_axis<TrimAxes.size();current_axis++) {
249 setDebug(TrimAxes[current_axis]);
250 updateRates();
251 Nsub=0;
252 if(!solution[current_axis]) {
253 if(checkLimits(TrimAxes[current_axis])) {
254 solution[current_axis]=true;
255 solve(TrimAxes[current_axis]);
256 }
257 } else if(findInterval(TrimAxes[current_axis])) {
258 solve(TrimAxes[current_axis]);
259 } else {
260 solution[current_axis]=false;
261 }
262 sub_iterations[current_axis]+=Nsub;
263 }
264 for(unsigned int current_axis=0;current_axis<TrimAxes.size();current_axis++) {
265 //these checks need to be done after all the axes have run
266 if(Debug > 0) TrimAxes[current_axis].AxisReport();
267 if(TrimAxes[current_axis].InTolerance()) {
268 axis_count++;
269 successful[current_axis]++;
270 }
271 }
272
273 if((axis_count == TrimAxes.size()-1) && (TrimAxes.size() > 1)) {
274 //cout << TrimAxes.size()-1 << " out of " << TrimAxes.size() << "!" << endl;
275 //At this point we can check the input limits of the failed axis
276 //and declare the trim failed if there is no sign change. If there
277 //is, keep going until success or max iteration count
278
279 //Oh, well: two out of three ain't bad
280 for(unsigned int current_axis=0;current_axis<TrimAxes.size();current_axis++) {
281 //these checks need to be done after all the axes have run
282 if(!TrimAxes[current_axis].InTolerance()) {
283 if(!checkLimits(TrimAxes[current_axis])) {
284 // special case this for now -- if other cases arise proper
285 // support can be added to FGTrimAxis
286 if( (gamma_fallback) &&
287 (TrimAxes[current_axis].GetStateType() == tUdot) &&
288 (TrimAxes[current_axis].GetControlType() == tThrottle)) {
289 cout << " Can't trim udot with throttle, trying flight"
290 << " path angle. (" << N << ")" << endl;
291 if(TrimAxes[current_axis].GetState() > 0)
292 TrimAxes[current_axis].SetControlToMin();
293 else
294 TrimAxes[current_axis].SetControlToMax();
295 TrimAxes[current_axis].Run();
296 TrimAxes[current_axis]=FGTrimAxis(fdmex,&fgic,tUdot,tGamma);
297 } else {
298 cout << " Sorry, " << TrimAxes[current_axis].GetStateName()
299 << " doesn't appear to be trimmable" << endl;
300 //total_its=k;
301 trim_failed=true; //force the trim to fail
302 } //gamma_fallback
303 }
304 } //solution check
305 } //for loop
306 } //all-but-one check
307 N++;
308 if(N > max_iterations)
309 trim_failed=true;
310 } while((axis_count < TrimAxes.size()) && (!trim_failed));
311
312 if((!trim_failed) && (axis_count >= TrimAxes.size())) {
313 total_its=N;
314 if (debug_lvl > 0)
315 cout << endl << " Trim successful" << endl;
316 } else { // The trim has failed
317 total_its=N;
318
319 // Restore the aircraft parameters to their initial values
320 fgic = *fdmex->GetIC();
321 FCS->SetDeCmd(elevator0);
322 FCS->SetDaCmd(aileron0);
323 FCS->SetDrCmd(rudder0);
324 FCS->SetPitchTrimCmd(PitchTrim0);
325 for (unsigned int i=0; i < throttle0.size(); i++)
326 FCS->SetThrottleCmd(i, throttle0[i]);
327
328 fdmex->Initialize(&fgic);
329 fdmex->Run();
330
331 // If WOW is true we must make sure there are no gears into the ground.
332 if (GroundReactions->GetWOW())
333 trimOnGround();
334
335 if (debug_lvl > 0)
336 cout << endl << " Trim failed" << endl;
337 }
338
339 fdmex->GetPropagate()->InitializeDerivatives();
340 fdmex->ResumeIntegration();
341 fdmex->SetTrimStatus(false);
342
343 for(int i=0;i < GroundReactions->GetNumGearUnits();i++)
344 GroundReactions->GetGearUnit(i)->SetReport(true);
345
346 return !trim_failed;
347}
std::shared_ptr< FGFCS > GetFCS(void) const
Returns the FGFCS pointer.
std::shared_ptr< FGPropagate > GetPropagate(void) const
Returns the FGPropagate pointer.
bool Run(void)
This function executes each scheduled model in succession.
std::shared_ptr< FGGroundReactions > GetGroundReactions(void) const
Returns the FGGroundReactions pointer.
void SuspendIntegration(void)
Suspends the simulation and sets the delta T to zero.
Definition FGFDMExec.h:555
void Initialize(const FGInitialCondition *FGIC)
Initializes the simulation with initial conditions.
void ResumeIntegration(void)
Resumes the simulation by resetting delta T to the correct value.
Definition FGFDMExec.h:558
double GetPhiRadIC(void) const
Gets the initial roll angle.
void SetPRadpsIC(double P)
Sets the initial body axis roll rate.
double GetAltitudeAGLFtIC(void) const
Gets the initial altitude above ground level.
void SetRRadpsIC(double R)
Sets the initial body axis yaw rate.
void SetQRadpsIC(double Q)
Sets the initial body axis pitch rate.
double GetThetaRadIC(void) const
Gets the initial pitch angle.
+ Here is the call graph for this function:

◆ EditState()

bool EditState ( State  state,
Control  new_control 
)

Change the control used to zero a state previously configured.

Parameters
statethe accel or other condition to zero
new_controlthe control used to zero the state

Definition at line 171 of file FGTrim.cpp.

171 {
172 mode = tCustom;
173 vector <FGTrimAxis>::iterator iAxes = TrimAxes.begin();
174 while (iAxes != TrimAxes.end()) {
175 if( iAxes->GetStateType() == state ) {
176 *iAxes = FGTrimAxis(fdmex,&fgic,state,new_control);
177 return true;
178 }
179 ++iAxes;
180 }
181 return false;
182}

◆ GetGammaFallback()

bool GetGammaFallback ( void  )
inline

query the fallback state

Returns
true if fallback is enabled.

Definition at line 249 of file FGTrim.h.

249{ return gamma_fallback; }

◆ GetTargetNlf()

double GetTargetNlf ( void  )
inline

Definition at line 289 of file FGTrim.h.

289{ return targetNlf; }

◆ RemoveState()

bool RemoveState ( State  state)

Remove a specific state-control pair from the current configuration.

Parameters
statethe state to remove
Returns
true if removal is successful

Definition at line 148 of file FGTrim.cpp.

148 {
149 bool result=false;
150
151 mode = tCustom;
152 vector <FGTrimAxis>::iterator iAxes = TrimAxes.begin();
153 while (iAxes != TrimAxes.end()) {
154 if( iAxes->GetStateType() == state ) {
155 iAxes = TrimAxes.erase(iAxes);
156 result=true;
157 continue;
158 }
159 ++iAxes;
160 }
161 if(result) {
162 sub_iterations.resize(TrimAxes.size());
163 successful.resize(TrimAxes.size());
164 solution.resize(TrimAxes.size());
165 }
166 return result;
167}

◆ Report()

void Report ( void  )

Print the results of the trim.

For each axis trimmed, this includes the final state value, control value, and tolerance used.

Returns
true if trim succeeds

Definition at line 113 of file FGTrim.cpp.

113 {
114 cout << " Trim Results: " << endl;
115 for(unsigned int current_axis=0; current_axis<TrimAxes.size(); current_axis++)
116 TrimAxes[current_axis].AxisReport();
117
118}

◆ SetDebug()

void SetDebug ( int  level)
inline

Debug level 1 shows results of each top-level iteration Debug level 2 shows level 1 & results of each per-axis iteration.

Definition at line 279 of file FGTrim.h.

279{ DebugLevel = level; }

◆ SetGammaFallback()

void SetGammaFallback ( bool  bb)
inline

automatically switch to trimming longitudinal acceleration with flight path angle (gamma) once it becomes apparent that there is not enough/too much thrust.

Parameters
bbtrue to enable fallback

Definition at line 244 of file FGTrim.h.

244{ gamma_fallback=bb; }

◆ SetMaxCycles()

void SetMaxCycles ( int  ii)
inline

Set the iteration limit.

DoTrim() will return false if limit iterations are reached before trim is achieved. The default is 60. This does not ordinarily need to be changed.

Parameters
iiinteger iteration limit

Definition at line 256 of file FGTrim.h.

256{ max_iterations = ii; }

◆ SetMaxCyclesPerAxis()

void SetMaxCyclesPerAxis ( int  ii)
inline

Set the per-axis iteration limit.

Attempt to zero each state by iterating limit times before moving on to the next. The default limit is 100 and also does not ordinarily need to be changed.

Parameters
iiinteger iteration limit

Definition at line 264 of file FGTrim.h.

264{ max_sub_iterations = ii; }

◆ SetMode()

void SetMode ( TrimMode  tm)

Clear all state-control pairs and set a predefined trim mode.

Parameters
tmthe set of axes to trim. Can be: tLongitudinal, tFull, tGround, tCustom, or tNone

Definition at line 801 of file FGTrim.cpp.

801 {
802 ClearStates();
803 mode=tt;
804 switch(tt) {
805 case tFull:
806 if (debug_lvl > 0)
807 cout << " Full Trim" << endl;
808 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tWdot,tAlpha));
809 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tUdot,tThrottle ));
810 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tQdot,tPitchTrim ));
811 //TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tHmgt,tBeta ));
812 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tVdot,tPhi ));
813 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tPdot,tAileron ));
814 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tRdot,tRudder ));
815 break;
816 case tLongitudinal:
817 if (debug_lvl > 0)
818 cout << " Longitudinal Trim" << endl;
819 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tWdot,tAlpha ));
820 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tUdot,tThrottle ));
821 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tQdot,tPitchTrim ));
822 break;
823 case tGround:
824 if (debug_lvl > 0)
825 cout << " Ground Trim" << endl;
826 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tWdot,tAltAGL ));
827 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tQdot,tTheta ));
828 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tPdot,tPhi ));
829 break;
830 case tPullup:
831 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tNlf,tAlpha ));
832 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tUdot,tThrottle ));
833 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tQdot,tPitchTrim ));
834 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tHmgt,tBeta ));
835 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tVdot,tPhi ));
836 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tPdot,tAileron ));
837 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tRdot,tRudder ));
838 break;
839 case tTurn:
840 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tWdot,tAlpha ));
841 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tUdot,tThrottle ));
842 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tQdot,tPitchTrim ));
843 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tVdot,tBeta ));
844 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tPdot,tAileron ));
845 TrimAxes.push_back(FGTrimAxis(fdmex,&fgic,tRdot,tRudder ));
846 break;
847 case tCustom:
848 case tNone:
849 break;
850 }
851 //cout << "TrimAxes.size(): " << TrimAxes.size() << endl;
852 sub_iterations.resize(TrimAxes.size());
853 successful.resize(TrimAxes.size());
854 solution.resize(TrimAxes.size());
855}
void ClearStates(void)
Clear all state-control pairs from the current configuration.
Definition FGTrim.cpp:122
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ SetTargetNlf()

void SetTargetNlf ( double  nlf)
inline

Definition at line 288 of file FGTrim.h.

288{ targetNlf=nlf; }

◆ SetTolerance()

void SetTolerance ( double  tt)
inline

Set the tolerance for declaring a state trimmed.

Angular accels are held to a tolerance of 1/10th of the given. The default is 0.001 for the recti-linear accelerations and 0.0001 for the angular.

Definition at line 270 of file FGTrim.h.

270 {
271 Tolerance = tt;
272 A_Tolerance = tt / 10;
273 }

◆ TrimStats()

void TrimStats ( )

Iteration statistics.

Definition at line 92 of file FGTrim.cpp.

92 {
93 int run_sum=0;
94 cout << endl << " Trim Statistics: " << endl;
95 cout << " Total Iterations: " << total_its << endl;
96 if( total_its > 0) {
97 cout << " Sub-iterations:" << endl;
98 for (unsigned int current_axis=0; current_axis<TrimAxes.size(); current_axis++) {
99 run_sum += TrimAxes[current_axis].GetRunCount();
100 cout << " " << setw(5) << TrimAxes[current_axis].GetStateName().c_str()
101 << ": " << setprecision(3) << sub_iterations[current_axis]
102 << " average: " << setprecision(5) << sub_iterations[current_axis]/double(total_its)
103 << " successful: " << setprecision(3) << successful[current_axis]
104 << " stability: " << setprecision(5) << TrimAxes[current_axis].GetAvgStability()
105 << endl;
106 }
107 cout << " Run Count: " << run_sum << endl;
108 }
109}

The documentation for this class was generated from the following files: