JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGLinearActuator Class Reference

Detailed Description

Models a flight control system summing component.

Linear actuators typically operate by conversion of rotary motion into linear motion. The linear_actuator component is described in the Wikipedia link: https://en.wikipedia.org/wiki/Linear_actuator.

Linear actuators converts a rotation into a linear movement or a multiturn rotation. For the conversion it is necessary to declare a module that is defined by the difference of the maximum and minimum value Input.

List of parameters:

  • input: Value to be transformed
  • Output: Output value following the following rule it is the result of gain * (bias + Input + module*countSpin)
  • CountSpin is the number of complete rotations calculated by this device
  • gain: Apply a multiplication coefficient to the output value, the default value is 1.0
  • bias: Value that is added to the input value
  • module: Difference between the maximum and minimum value of Input. Default is 1.0.
  • hysteresis: Defines the sensitivity of the actuator according to the input.

For example, if the actuator has a module of 360 and if the hysteresis is 5.0, the actuator, with gain = 1, will output a value equal to: 5, 10...355, 360, 365, 370 etc. This parameter allows to simulate stepper motors. The default value is 0.1 It is not advisable to have this parameter too small (less than 0.1) as it could make the CPU load heavier.

  • versus: Direction of rotation if fixed. The versus allows to obtain a mechanism similar to the tick of a clock. The default value is 0.

If the value is zero, the verse is automatically obtained according to variation of the input data.

If set to a value > 0.5 the verse is increasing, i.e. the output changes only if the Input value is greater than the previous one.

If set to a value < -0.5 the output is changed only if the next value is lower than the previous one.

With this parameter allows to easily obtain a "step counter".

  • rate: To define when the rotation is complete, the differential criterion is used.

For example, if the rotation is clockwise and the module is 360, the revolution will be complete when the input value changes from 360 to 0.

When this happens a counter increases the output of the value of the module. As a way the system keeps track of the number of rotations. Rate defines the sensitivity of the system.

If a difficulty in determining the rotation is observed during the tests, this parameter must be modified with a positive value not exceeding 1. The default value is 0.3

  • set: If the absolute value is greater or equal 0.5, the output changes according to the input.

If its value is lower 0.5, the output remains constant (the system stores the data). The use of this parameter allows to simulate the behavior of a servomechanism that is blocked, for example due to a power failure.

  • Reset: if the absolute value is greater or equal 0.5, the output returns to zero and reset internal data.
  • lag: Activate a lag filter on exit if the value is greater 0.0 the lag is active.

Be very careful to use the lag filter in case you use two or more "linear_actuator" in cascade; it may happen that the smoothing effect due to the lag in the output value can mislead the rotation determination system. The effect is similar to that of a loose coupling of a rack and pinion. Therefore, with these types of coupling, place lag only at the last stage.

<linear_actuator name="{string}">
<input> {property name} </input>
<bias> {property name | value} </bias>
<module> {value} </module>
<hysteresis> {value} </hysteresis>
<rate> {value} </rate>
<versus> {property name | value} </versus>
<gain> {value} </gain>
<set> {property name | value} </set>
<reset> {property name | value} </reset>
<lag> {value} </lag>
<output> {property name} </output>
</linear_actuator>

Mechanical counter:

It is the typical mechanism used to count the kilometers traveled by a car, for example the value of the digit changes quickly at the beginning of the km. Module 10 indicates that the count goes from 0 to 9 after one complete revolution.

<linear_actuator name="systems/gauges/PHI/indicator/digit3AW">
<input>systems/gauges/PHI/indicator/digit3A</input>
<module>10</module>
<rate>0.2</rate>
<lag>8.0</lag>
</linear_actuator>

The gyrocompass from a rotation with a value from 0 to 259 degrees. When it returns to zero, if it is made more realistic by means of an actuator, there is a jump of the disk which performs a complete rotation of 360 °. By activating a linear actuator followed by an actuator it is possible to obtain a very realistic result.

<linear_actuator name="gyrocompass-magnetic-deg-linear">
<input>gyrocompass-magnetic-deg</input>
<module>360</module>
</linear_actuator>
<actuator name="gyrocompass-magnetic-deg-linear-actuator">
<input>gyrocompass-magnetic-deg-linear</input>
<lag>2.0</lag>
<rate_limit>100</rate_limit>
<bias>0.1</bias>
<deadband_width>1</deadband_width>
<hysteresis_width>0.5</hysteresis_width>
</actuator>

Count steps with memory:

If you use a button or switch to advance a mechanism, we can build a step counter. In this case the module is 1 and the rate 1. The verse is positive (increasing). A pulse counter (for example the count of the switched-on states of a switch with values 1 and 0), the module must be 1 in that each step must advance its value by one unit. The verse is "1" because it has to accept only increasing values (as in a clock escapement). The gain is 0.5 because, in similitude to an escapement of a clock, the gear makes two steps for a complete rotation of the pendulum.

<linear_actuator name="systems/gauges/PHI/doppler/switch-increase-summer">
<input>systems/gauges/PHI/doppler/switch-increase</input>
<module>1</module>
<rate>1</rate>
<versus>1</versus>
<gain>0.5</gain>
<lag>0.0</lag>
<reset>systems/gauges/PHI/doppler/test_reset_off</reset>
</linear_actuator>
Author
Adriano Bassignana

Definition at line 220 of file FGLinearActuator.h.

#include <FGLinearActuator.h>

+ Inheritance diagram for FGLinearActuator:
+ Collaboration diagram for FGLinearActuator:

Public Member Functions

 FGLinearActuator (FGFCS *fcs, Element *element)
 Constructor.
 
 ~FGLinearActuator ()
 Destructor.
 
bool Run (void) override
 The execution method for this FCS component.
 
- Public Member Functions inherited from FGFCSComponent
 FGFCSComponent (FGFCS *fcs, Element *el)
 Constructor.
 
virtual ~FGFCSComponent ()
 Destructor.
 
std::string GetName (void) const
 
double GetOutput (void) const
 
virtual double GetOutputPct (void) const
 
std::string GetType (void) const
 
virtual void ResetPastStates (void)
 
virtual void SetOutput (void)
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Additional Inherited Members

- Public Types inherited from FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 
- Static Public Member Functions inherited from FGJSBBase
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
- Static Public Attributes inherited from FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Protected Member Functions inherited from FGFCSComponent
virtual void bind (Element *el, FGPropertyManager *pm)
 
void CheckInputNodes (size_t MinNodes, size_t MaxNodes, Element *el)
 
void Clip (void)
 
void Delay (void)
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from FGFCSComponent
bool clip
 
FGParameter_ptr ClipMax
 
FGParameter_ptr ClipMin
 
bool cyclic_clip
 
unsigned int delay
 
double delay_time
 
double dt
 
FGFCSfcs
 
int index
 
std::vector< FGPropertyValue_ptr > InitNodes
 
double Input
 
std::vector< FGPropertyValue_ptr > InputNodes
 
std::string Name
 
double Output
 
std::vector< double > output_array
 
std::vector< FGPropertyNode_ptr > OutputNodes
 
std::string Type
 
- Static Protected Attributes inherited from FGJSBBase
static constexpr double radtodeg = 180. / M_PI
 
static constexpr double degtorad = M_PI / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double fttom = 0.3048
 
static constexpr double ktstofps = 1852./(3600*fttom)
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 

Constructor & Destructor Documentation

◆ FGLinearActuator()

FGLinearActuator ( FGFCS fcs,
Element element 
)

Constructor.

Parameters
fcsa pointer to the parent FGFCS object.
elementa pointer to the configuration file node.

Definition at line 52 of file FGLinearActuator.cpp.

53 : FGFCSComponent(fcs, element)
54{
55 CheckInputNodes(1, 1, element);
56
57 ptrSet = nullptr;
58 auto PropertyManager = fcs->GetPropertyManager();
59 if (element->FindElement("set")) {
60 string property_string = element->FindElementValue("set");
61 ptrSet = new FGParameterValue(property_string, PropertyManager, element);
62 if (ptrSet && ptrSet->IsConstant()) {
63 set = ptrSet->GetValue() >= 0.5;
64 }
65 }
66
67 ptrReset = nullptr;
68 if (element->FindElement("reset")) {
69 string property_string = element->FindElementValue("reset");
70 ptrReset = new FGParameterValue(property_string, PropertyManager, element);
71 if (ptrReset && ptrReset->IsConstant()) {
72 reset = ptrReset->GetValue() >= 0.5;
73 }
74 }
75
76 ptrVersus = nullptr;
77 if (element->FindElement("versus")) {
78 string property_string = element->FindElementValue("versus");
79 ptrVersus = new FGParameterValue(property_string, PropertyManager, element);
80 if (ptrVersus && ptrVersus->IsConstant()) {
81 versus = ptrVersus->GetValue();
82 }
83 }
84
85 ptrBias = nullptr;
86 if (element->FindElement("bias")) {
87 string property_string = element->FindElementValue("bias");
88 ptrBias = new FGParameterValue(property_string, PropertyManager, element);
89 if (ptrBias && ptrBias->IsConstant()) {
90 bias = ptrBias->GetValue();
91 }
92 }
93
94 if (element->FindElement("module")) {
95 module = element->FindElementValueAsNumber("module");
96 if (module < 0) {
97 cout << "FGLinearActuator::Run " << InputNodes[0]->GetNameWithSign()
98 << " <module> parameter is forced from " << module
99 << " value to 1.0 value" << endl;
100 module = 1.0;
101 }
102 }
103
104 if (element->FindElement("hysteresis")) {
105 hysteresis = element->FindElementValueAsNumber("hysteresis");
106 if (hysteresis < 0) {
107 cout << "FGLinearActuator::Run " << InputNodes[0]->GetNameWithSign()
108 << " <hysteresis> parameter is forced from " << hysteresis
109 << " value to 0.0 value" << endl;
110 hysteresis = 0.0;
111 }
112 }
113
114 if (element->FindElement("lag")) {
115 lag = element->FindElementValueAsNumber("lag");
116 if (lag > 0.0) {
117 double denom = 2.00 + dt*lag;
118 ca = dt * lag / denom;
119 cb = (2.00 - dt * lag) / denom;
120 previousLagInput = previousLagOutput = 0.0;
121 } else {
122 if (lag < 0) {
123 cout << "FGLinearActuator::Run " << InputNodes[0]->GetNameWithSign()
124 << " <lag> parameter is forced from "
125 << lag << " value to 0.0 value" << endl;
126 lag = 0;
127 }
128 }
129 }
130
131 if (element->FindElement("rate")) {
132 rate = element->FindElementValueAsNumber("rate");
133 if (rate <= 0 || rate > 1.0) {
134 cout << "FGLinearActuator::Run " << InputNodes[0]->GetNameWithSign()
135 << " <rate> parameter is forced from " << rate
136 << " value to 0.5 value" << endl;
137 rate = 0.5;
138 }
139 }
140
141 if (element->FindElement("gain"))
142 gain = element->FindElementValueAsNumber("gain");
143
144 bind(element, PropertyManager.get());
145
146 Debug(0);
147}
FGFCSComponent(FGFCS *fcs, Element *el)
Constructor.
+ Here is the call graph for this function:

◆ ~FGLinearActuator()

Destructor.

Definition at line 151 of file FGLinearActuator.cpp.

152{
153 Debug(1);
154}

Member Function Documentation

◆ Run()

bool Run ( void  )
overridevirtual

The execution method for this FCS component.

Reimplemented from FGFCSComponent.

Definition at line 158 of file FGLinearActuator.cpp.

159{
160 if (ptrSet && !ptrSet->IsConstant()) set = ptrSet->GetValue() >= 0.5;
161 if (ptrReset && !ptrReset->IsConstant()) reset = ptrReset->GetValue() >= 0.5;
162
163 if (reset) {
164 inputMem = 0.0;
165 countSpin = 0;
166 direction = 0;
167 Output = 0.0;
168 inputLast = 0.0;
169 } else {
170 if (set) {
171 Input = InputNodes[0]->getDoubleValue() - inputLast;
172 double inputDelta = Input - inputMem;
173 if (abs(inputDelta) >= hysteresis) {
174 if (ptrVersus && !ptrVersus->IsConstant()) {
175 versus = ptrVersus->GetValue();
176 if (versus >= 0.5) {
177 versus = 1;
178 } else if (versus <= -0.5) {
179 versus = -1;
180 } else versus = 0;
181 }
182 if (abs(inputDelta) <= (module * rate)) {
183 if (inputDelta > 0.0) {
184 direction = 1;
185 } else if (inputDelta < 0.0) {
186 direction = -1;
187 }
188 }
189 if ((versus == 0) || (versus == direction)) {
190 inputMem = Input;
191 if (abs(inputDelta) >= (module*rate)) {
192 if (inputDelta < 0)
193 countSpin++;
194 else
195 countSpin--;
196 }
197 } else if ((versus != 0) && (direction != 0) && (versus != direction)) {
198 inputLast += inputDelta;
199 }
200 }
201 }
202 if (ptrBias && !ptrBias->IsConstant()) {
203 bias = ptrBias->GetValue();
204 }
205 Output = gain * (bias + inputMem + module*countSpin);
206 }
207
208 if (lag > 0.0) {
209 double input = Output;
210 Output = ca * (input + previousLagInput) + previousLagOutput * cb;
211 previousLagInput = input;
212 previousLagOutput = Output;
213 }
214
215 SetOutput();
216
217 return true;
218}

The documentation for this class was generated from the following files: