JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGRotor Class Reference

Detailed Description

Models a helicopter rotor.

Configuration File Format

<rotor name="{string}">
<diameter unit="{LENGTH}"> {number} </diameter>
<numblades> {number} </numblades>
<gearratio> {number} </gearratio>
<nominalrpm> {number} </nominalrpm>
<minrpm> {number} </minrpm>
<maxrpm> {number} </maxrpm>
<chord unit="{LENGTH}"> {number} </chord>
<liftcurveslope Xunit="1/RAD"> {number} </liftcurveslope>
<twist unit="{ANGLE}"> {number} </twist>
<hingeoffset unit="{LENGTH}"> {number} </hingeoffset>
<flappingmoment unit="{MOMENT}"> {number} </flappingmoment>
<massmoment Xunit="SLUG*FT"> {number} </massmoment>
<polarmoment unit="{MOMENT}"> {number} </polarmoment>
<inflowlag> {number} </inflowlag>
<tiplossfactor> {number} </tiplossfactor>
<maxbrakepower unit="{POWER}"> {number} </maxbrakepower>
<gearloss unit="{POWER}"> {number} </gearloss>
<gearmoment unit="{MOMENT}"> {number} </gearmoment>
<controlmap> {MAIN|TAIL|TANDEM} </controlmap>
<ExternalRPM> {number} </ExternalRPM>
<groundeffectexp> {number} </groundeffectexp>
<groundeffectshift unit="{LENGTH}"> {number} </groundeffectshift>
</rotor>
// LENGTH means any of the supported units, same for ANGLE and MOMENT.
// Xunit-attributes are a hint for currently unsupported units, so
// values must be provided accordingly.

Configuration Parameters:

Brief description and the symbol frequently found in the literature.

    <diameter>           - Rotor disk diameter (2x R).
    <numblades>          - Number of blades (b).
    <gearratio>          - Ratio of (engine rpm) / (rotor rpm), usually > 1.
    <nominalrpm>         - RPM at which the rotor usally operates.
    <minrpm>             - Lowest RPM used in the model, optional and defaults to 1.
    <maxrpm>             - Largest RPM used in the model, optional and defaults to 2 x nominalrpm.
    <chord>              - Blade chord, (c).
    <liftcurveslope>     - Slope of curve of section lift against section angle of attack,
                             per rad (a).
    <twist>              - Blade twist from root to tip, (theta_1).
    <hingeoffset>        - Rotor flapping-hinge offset (e).
    <flappingmoment>     - Flapping moment of inertia (I_b).
    <massmoment>         - Blade mass moment. Mass of a single blade times the blade's
                             cg-distance from the hub, optional.
    <polarmoment>        - Moment of inertia for the whole rotor disk, optional.
    <inflowlag>          - Rotor inflow time constant, sec. Smaller values yield to quicker
                              responses (typical values for main rotor: 0.1 - 0.2 s).
    <tiplossfactor>      - Tip-loss factor. The Blade fraction that produces lift.
                              Value usually ranges between 0.95 - 1.0, optional (B).

    <maxbrakepower>      - Rotor brake, 20-30 hp should work for a mid size helicopter.
    <gearloss>           - Friction in gear, 0.2% to 3% of the engine power, optional (see notes).
    <gearmoment>         - Approximation for the moment of inertia of the gear (and engine),
                              defaults to 0.1 * polarmoment, optional.

    <controlmap>         - Defines the control inputs used (see notes).

    <ExternalRPM>        - Links the rotor to another rotor, or an user controllable property.

    Experimental properties

    <groundeffectexp>    - Exponent for ground effect approximation. Values usually range from 0.04
                            for large rotors to 0.1 for smaller ones. As a rule of thumb the effect
                            vanishes at a height 2-3 times the rotor diameter.
                              formula used: exp ( - groundeffectexp * (height+groundeffectshift) )
                            Omitting or setting to 0.0 disables the effect calculation.
    <groundeffectshift>  - Further adjustment of ground effect, approx. hub height or slightly above
                            (This lessens the influence of the ground effect).

Notes:

- Controls -

The behavior of the rotor is controlled/influenced by following inputs.

  • The power provided by the engine. This is handled by the regular engine controls.
  • The collective control input. This is read from the fdm property propulsion/engine[x]/collective-ctrl-rad. See below for tail rotor
  • The lateral cyclic input. Read from propulsion/engine[x]/lateral-ctrl-rad.
  • The longitudinal cyclic input. Read from propulsion/engine[x]/longitudinal-ctrl-rad.
  • The tail rotor collective (aka antitorque, aka pedal) control input. Read from propulsion/engine[x]/antitorque-ctrl-rad or propulsion/engine[x]/tail-collective-ctrl-rad.

- Tail/tandem rotor -

Providing <ExternalRPM> 0 </ExternalRPM> the tail rotor's RPM is linked to to the main (=first, =0) rotor, and specifing <controlmap> TAIL </controlmap> tells this rotor to read the collective input from propulsion/engine[1]/antitorque-ctrl-rad (The TAIL-map ignores lateral and longitudinal input). The rotor needs to be attached to a dummy engine, e.g. an 1HP electrical engine. A tandem rotor is setup analogous.

- Sense -

The 'sense' parameter from the thruster is interpreted as follows, sense=1 means counter clockwise rotation of the main rotor, as viewed from above. This is as a far as I know more popular than clockwise rotation, which is defined by setting sense to -1. Concerning coaxial designs - by setting 'sense' to zero, a Kamov-style rotor is modeled (i.e. the rotor produces no torque).

- Engine issues -

In order to keep the rotor/engine speed constant, use of a RPM-Governor system is encouraged (see examples).

In case the model requires the manual use of a clutch the <gearloss> property might need attention.

  • Electrical: here the gear-loss should be rather large to keep the engine controllable when the clutch is open (although full throttle might still make it spin away).
  • Piston: this engine model already has some internal friction loss and also looses power if it spins too high. Here the gear-loss could be set to 0.25% of the engine power (which is also the approximated default).
  • Turboprop: Here the default value might be a bit too small. Also it's advisable to adjust the power table for rpm values that are far beyond the nominal value.

- Scaling the ground effect -

The property propulsion/engine[x]/groundeffect-scale-norm allows fdm based scaling of the ground effect influence. For instance the effect vanishes at speeds above approx. 50kts, or one likes to land on a 'perforated' helipad.

- Development hints -

Setting <ExternalRPM> -1 </ExternalRPM> the rotor's RPM is controlled by the propulsion/engine[x]/x-rpm-dict property. This feature can be useful when developing a FDM.

References:

<dl>    
<dt>/SH79/</dt><dd>Shaugnessy, J. D., Deaux, Thomas N., and Yenni, Kenneth R.,
          "Development and Validation of a Piloted Simulation of a
          Helicopter and External Sling Load",  NASA TP-1285, 1979.</dd>
<dt>/BA41/</dt><dd>Bailey,F.J.,Jr., "A Simplified Theoretical Method of Determining
          the Characteristics of a Lifting Rotor in Forward Flight", NACA Rep.716, 1941.</dd>
<dt>/AM50/</dt><dd>Amer, Kenneth B.,"Theory of Helicopter Damping in Pitch or Roll and a
          Comparison With Flight Measurements", NACA TN-2136, 1950.</dd>
<dt>/TA77/</dt><dd>Talbot, Peter D., Corliss, Lloyd D., "A Mathematical Force and Moment
          Model of a UH-1H Helicopter for Flight Dynamics Simulations", NASA TM-73,254, 1977.</dd>
<dt>/GE49/</dt><dd>Gessow, Alfred, Amer, Kenneth B. "An Introduction to the Physical 
          Aspects of Helicopter Stability", NACA TN-1982, 1949.</dd>
</dl>

@author Thomas Kreitler

Definition at line 235 of file FGRotor.h.

#include <FGRotor.h>

+ Inheritance diagram for FGRotor:
+ Collaboration diagram for FGRotor:

Public Member Functions

 FGRotor (FGFDMExec *exec, Element *rotor_element, int num)
 Constructor for FGRotor.
 
 ~FGRotor ()
 Destructor for FGRotor.
 
double Calculate (double EnginePower)
 Returns the scalar thrust of the rotor, and adjusts the RPM value.
 
double GetA0 (void) const
 Retrieves the rotor's coning angle.
 
double GetA1 (void) const
 Retrieves the longitudinal flapping angle with respect to the rotor shaft.
 
double GetB1 (void) const
 Retrieves the lateral flapping angle with respect to the rotor shaft.
 
double GetCollectiveCtrl (void) const
 Retrieves the collective control input in radians.
 
double GetCT (void) const
 Retrieves the thrust coefficient.
 
double GetEngineRPM (void) const
 Retrieves the RPMs of the Engine, as seen from this rotor.
 
double GetGearRatio (void)
 Tells the rotor's gear ratio, usually the engine asks for this.
 
double GetGroundEffectScaleNorm (void) const
 Retrieves the ground effect scaling factor.
 
double GetLambda (void) const
 Retrieves the inflow ratio.
 
double GetLateralCtrl (void) const
 Retrieves the lateral control input in radians.
 
double GetLongitudinalCtrl (void) const
 Retrieves the longitudinal control input in radians.
 
double GetMu (void) const
 Retrieves the tip-speed (aka advance) ratio.
 
double GetNu (void) const
 Retrieves the induced inflow ratio.
 
double GetPhiDW (void) const
 Downwash angle - positive values point leftward (given a horizontal spinning rotor)
 
double GetPowerRequired (void) const
 Returns the power required by the rotor.
 
double GetRPM (void) const
 Retrieves the RPMs of the rotor.
 
double GetThetaDW (void) const
 Downwash angle - positive values point forward (given a horizontal spinning rotor)
 
double GetThrust (void) const
 Retrieves the thrust of the rotor.
 
std::string GetThrusterLabels (int id, const std::string &delimeter)
 
std::string GetThrusterValues (int id, const std::string &delimeter)
 
double GetTorque (void) const
 Retrieves the torque.
 
double GetVi (void) const
 Retrieves the induced velocity.
 
void SetCollectiveCtrl (double c)
 Sets the collective control input in radians.
 
void SetEngineRPM (double rpm)
 
void SetGroundEffectScaleNorm (double g)
 Sets the ground effect scaling factor.
 
void SetLateralCtrl (double c)
 Sets the lateral control input in radians.
 
void SetLongitudinalCtrl (double c)
 Sets the longitudinal control input in radians.
 
void SetRPM (double rpm)
 
- Public Member Functions inherited from FGThruster
 FGThruster (FGFDMExec *FDMExec, Element *el, int num)
 Constructor.
 
virtual ~FGThruster ()
 Destructor.
 
double GetGearRatio (void)
 
std::string GetName (void)
 
virtual double GetPowerRequired (void)
 
double GetReverserAngle (void) const
 
double GetThrust (void) const
 
eType GetType (void)
 
virtual void ResetToIC (void)
 
void SetName (std::string name)
 
void SetReverserAngle (double angle)
 
- Public Member Functions inherited from FGForce
 FGForce (FGFDMExec *FDMExec)
 Constructor.
 
virtual ~FGForce ()
 Destructor.
 
const FGColumnVector3GetActingLocation (void) const
 
double GetActingLocationX (void) const
 
double GetActingLocationY (void) const
 
double GetActingLocationZ (void) const
 
double GetAnglesToBody (int axis) const
 
const FGColumnVector3GetAnglesToBody (void) const
 
virtual const FGColumnVector3GetBodyForces (void)
 
double GetBodyXForce (void) const
 
double GetBodyYForce (void) const
 
double GetBodyZForce (void) const
 
const FGColumnVector3GetLocation (void) const
 
double GetLocationX (void) const
 
double GetLocationY (void) const
 
double GetLocationZ (void) const
 
const FGColumnVector3GetMoments (void) const
 
double GetPitch (void) const
 
TransformType GetTransformType (void) const
 
double GetYaw (void) const
 
void SetActingLocation (const FGColumnVector3 &vv)
 
void SetActingLocation (double x, double y, double z)
 Acting point of application.
 
void SetActingLocationX (double x)
 
void SetActingLocationY (double y)
 
void SetActingLocationZ (double z)
 
void SetAnglesToBody (const FGColumnVector3 &vv)
 
void SetAnglesToBody (double broll, double bpitch, double byaw)
 
void SetLocation (const FGColumnVector3 &vv)
 
void SetLocation (double x, double y, double z)
 
void SetLocationX (double x)
 
void SetLocationY (double y)
 
void SetLocationZ (double z)
 
void SetPitch (double pitch)
 
void SetTransformType (TransformType ii)
 
void SetYaw (double yaw)
 
const FGMatrix33Transform (void) const
 
void UpdateCustomTransformMatrix (void)
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Additional Inherited Members

- Public Types inherited from FGThruster
enum  eType { ttNozzle , ttRotor , ttPropeller , ttDirect }
 
- Public Types inherited from FGForce
enum  TransformType {
  tNone , tWindBody , tLocalBody , tInertialBody ,
  tCustom
}
 
- Public Types inherited from FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 
- Static Public Member Functions inherited from FGJSBBase
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
- Public Attributes inherited from FGThruster
struct JSBSim::FGThruster::Inputs in
 
- Static Public Attributes inherited from FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from FGThruster
int EngineNum
 
double GearRatio
 
std::string Name
 
double PowerRequired
 
double ReverserAngle
 
double Thrust
 
double ThrustCoeff
 
eType Type
 
- Protected Attributes inherited from FGForce
FGFDMExecfdmex
 
std::shared_ptr< FGMassBalanceMassBalance
 
FGMatrix33 mT
 
TransformType ttype
 
FGColumnVector3 vActingXYZn
 
FGColumnVector3 vFn
 
FGColumnVector3 vMn
 
FGColumnVector3 vOrient
 
FGColumnVector3 vXYZn
 
- Static Protected Attributes inherited from FGJSBBase
static constexpr double radtodeg = 180. / M_PI
 
static constexpr double degtorad = M_PI / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double fttom = 0.3048
 
static constexpr double ktstofps = 1852./(3600*fttom)
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 

Constructor & Destructor Documentation

◆ FGRotor()

FGRotor ( FGFDMExec exec,
Element rotor_element,
int  num 
)

Constructor for FGRotor.

Parameters
execa pointer to the main executive object
rotor_elementa pointer to the thruster config file XML element
numthe number of this rotor

Definition at line 75 of file FGRotor.cpp.

76 : FGThruster(exec, rotor_element, num),
77 rho(0.002356), // environment
78 Radius(0.0), BladeNum(0), // configuration parameters
79 Sense(1.0), NominalRPM(0.0), MinimalRPM(0.0), MaximalRPM(0.0),
80 ExternalRPM(0), RPMdefinition(0), ExtRPMsource(NULL), SourceGearRatio(1.0),
81 BladeChord(0.0), LiftCurveSlope(0.0), BladeTwist(0.0), HingeOffset(0.0),
82 BladeFlappingMoment(0.0), BladeMassMoment(0.0), PolarMoment(0.0),
83 InflowLag(0.0), TipLossB(0.0),
84 GroundEffectExp(0.0), GroundEffectShift(0.0), GroundEffectScaleNorm(1.0),
85 LockNumberByRho(0.0), Solidity(0.0), // derived parameters
86 RPM(0.0), Omega(0.0), // dynamic values
87 beta_orient(0.0),
88 a0(0.0), a_1(0.0), b_1(0.0), a_dw(0.0),
89 a1s(0.0), b1s(0.0),
90 H_drag(0.0), J_side(0.0), Torque(0.0), C_T(0.0),
91 lambda(-0.001), mu(0.0), nu(0.001), v_induced(0.0),
92 theta_downwash(0.0), phi_downwash(0.0),
93 ControlMap(eMainCtrl), // control
94 CollectiveCtrl(0.0), LateralCtrl(0.0), LongitudinalCtrl(0.0),
95 Transmission(NULL), // interaction with engine
96 EngineRPM(0.0), MaxBrakePower(0.0), GearLoss(0.0), GearMoment(0.0)
97{
98 FGColumnVector3 location(0.0, 0.0, 0.0), orientation(0.0, 0.0, 0.0);
99 Element *thruster_element;
100 double engine_power_est = 0.0;
101
102 // initialise/set remaining variables
103 SetTransformType(FGForce::tCustom);
104 Type = ttRotor;
105 GearRatio = 1.0;
106
107 dt = exec->GetDeltaT();
108 for (int i=0; i<5; i++) R[i] = 0.0;
109 for (int i=0; i<5; i++) B[i] = 0.0;
110
111 // get positions
112 thruster_element = rotor_element->GetParent()->FindElement("sense");
113 if (thruster_element) {
114 double s = thruster_element->GetDataAsNumber();
115 if (s < -0.1) {
116 Sense = -1.0; // 'CW' as seen from above
117 } else if (s < 0.1) {
118 Sense = 0.0; // 'coaxial'
119 } else {
120 Sense = 1.0; // 'CCW' as seen from above
121 }
122 }
123
124 thruster_element = rotor_element->GetParent()->FindElement("location");
125 if (thruster_element) {
126 location = thruster_element->FindElementTripletConvertTo("IN");
127 } else {
128 cerr << "No thruster location found." << endl;
129 }
130
131 thruster_element = rotor_element->GetParent()->FindElement("orient");
132 if (thruster_element) {
133 orientation = thruster_element->FindElementTripletConvertTo("RAD");
134 } else {
135 cerr << "No thruster orientation found." << endl;
136 }
137
138 SetLocation(location);
139 SetAnglesToBody(orientation);
140 InvTransform = Transform().Transposed(); // body to custom/native
141
142 // wire controls
143 ControlMap = eMainCtrl;
144 if (rotor_element->FindElement("controlmap")) {
145 string cm = rotor_element->FindElementValue("controlmap");
146 cm = to_upper(cm);
147 if (cm == "TAIL") {
148 ControlMap = eTailCtrl;
149 } else if (cm == "TANDEM") {
150 ControlMap = eTandemCtrl;
151 } else {
152 cerr << "# found unknown controlmap: '" << cm << "' using main rotor config." << endl;
153 }
154 }
155
156 // ExternalRPM -- is the RPM dictated ?
157 if (rotor_element->FindElement("ExternalRPM")) {
158 ExternalRPM = 1;
159 SourceGearRatio = 1.0;
160 RPMdefinition = (int) rotor_element->FindElementValueAsNumber("ExternalRPM");
161 int rdef = RPMdefinition;
162 if (RPMdefinition>=0) {
163 // avoid ourself and (still) unknown engines.
164 if (!exec->GetPropulsion()->GetEngine(RPMdefinition) || RPMdefinition==num) {
165 RPMdefinition = -1;
166 } else {
167 FGThruster *tr = exec->GetPropulsion()->GetEngine(RPMdefinition)->GetThruster();
168 SourceGearRatio = tr->GetGearRatio();
169 // cout << "# got sources' GearRatio: " << SourceGearRatio << endl;
170 }
171 }
172 if (RPMdefinition != rdef) {
173 cerr << "# discarded given RPM source (" << rdef << ") and switched to external control (-1)." << endl;
174 }
175 }
176
177 // process rotor parameters
178 engine_power_est = Configure(rotor_element);
179
180 // setup transmission if needed
181 if (!ExternalRPM) {
182
183 Transmission = new FGTransmission(exec, num, dt);
184
185 Transmission->SetThrusterMoment(PolarMoment);
186
187 // The MOI sensed behind the gear ( MOI_engine*sqr(GearRatio) ).
188 GearMoment = ConfigValueConv(rotor_element, "gearmoment", 0.1*PolarMoment, "SLUG*FT2");
189 GearMoment = Constrain(1e-6, GearMoment, 1e9);
190 Transmission->SetEngineMoment(GearMoment);
191
192 Transmission->SetMaxBrakePower(MaxBrakePower);
193
194 GearLoss = ConfigValueConv(rotor_element, "gearloss", 0.0025 * engine_power_est, "HP");
195 GearLoss = Constrain(0.0, GearLoss, 1e9);
196 GearLoss *= hptoftlbssec;
197 Transmission->SetEngineFriction(GearLoss);
198
199 }
200
201 // shaft representation - a rather simple transform,
202 // but using a matrix is safer.
203 TboToHsr = { 0.0, 0.0, 1.0,
204 0.0, 1.0, 0.0,
205 -1.0, 0.0, 0.0 };
206 HsrToTbo = TboToHsr.Transposed();
207
208 // smooth out jumps in hagl reported, otherwise the ground effect
209 // calculation would cause jumps too. 1Hz seems sufficient.
210 damp_hagl = Filter(1.0, dt);
211
212 // enable import-export
213 bindmodel(exec->GetPropertyManager().get());
214
215 Debug(0);
216
217} // Constructor
static constexpr double Constrain(double min, double value, double max)
Constrain a value between a minimum and a maximum value.
Definition FGJSBBase.h:288
FGMatrix33 Transposed(void) const
Transposed matrix.
Definition FGMatrix33.h:221
FGThruster(FGFDMExec *FDMExec, Element *el, int num)
Constructor.
+ Here is the call graph for this function:

◆ ~FGRotor()

~FGRotor ( )

Destructor for FGRotor.

Definition at line 221 of file FGRotor.cpp.

221 {
222 if (Transmission) delete Transmission;
223 Debug(1);
224}

Member Function Documentation

◆ Calculate()

double Calculate ( double  EnginePower)
virtual

Returns the scalar thrust of the rotor, and adjusts the RPM value.

Reimplemented from FGThruster.

Definition at line 671 of file FGRotor.cpp.

672{
673
674 CalcRotorState();
675
676 if (! ExternalRPM) {
677 // the RPM values are handled inside Transmission
678 Transmission->Calculate(EnginePower, Torque, in.TotalDeltaT);
679
680 EngineRPM = Transmission->GetEngineRPM() * GearRatio;
681 RPM = Transmission->GetThrusterRPM();
682 } else {
683 EngineRPM = RPM * GearRatio;
684 }
685
686 RPM = Constrain(MinimalRPM, RPM, MaximalRPM); // trim again
687
688 return Thrust;
689}
+ Here is the call graph for this function:

◆ GetA0()

double GetA0 ( void  ) const
inline

Retrieves the rotor's coning angle.

Definition at line 270 of file FGRotor.h.

270{ return a0; }

◆ GetA1()

double GetA1 ( void  ) const
inline

Retrieves the longitudinal flapping angle with respect to the rotor shaft.

Definition at line 272 of file FGRotor.h.

272{ return a1s; }

◆ GetB1()

double GetB1 ( void  ) const
inline

Retrieves the lateral flapping angle with respect to the rotor shaft.

Definition at line 274 of file FGRotor.h.

274{ return b1s; }

◆ GetCollectiveCtrl()

double GetCollectiveCtrl ( void  ) const
inline

Retrieves the collective control input in radians.

Definition at line 300 of file FGRotor.h.

300{ return CollectiveCtrl; }

◆ GetCT()

double GetCT ( void  ) const
inline

Retrieves the thrust coefficient.

Definition at line 285 of file FGRotor.h.

285{ return C_T; }

◆ GetEngineRPM()

double GetEngineRPM ( void  ) const
inlinevirtual

Retrieves the RPMs of the Engine, as seen from this rotor.

Reimplemented from FGThruster.

Definition at line 262 of file FGRotor.h.

262{return EngineRPM;} //{ return GearRatio*RPM; }

◆ GetGearRatio()

double GetGearRatio ( void  )
inline

Tells the rotor's gear ratio, usually the engine asks for this.

Definition at line 265 of file FGRotor.h.

265{ return GearRatio; }

◆ GetGroundEffectScaleNorm()

double GetGroundEffectScaleNorm ( void  ) const
inline

Retrieves the ground effect scaling factor.

Definition at line 295 of file FGRotor.h.

295{ return GroundEffectScaleNorm; }

◆ GetLambda()

double GetLambda ( void  ) const
inline

Retrieves the inflow ratio.

Definition at line 277 of file FGRotor.h.

277{ return lambda; }

◆ GetLateralCtrl()

double GetLateralCtrl ( void  ) const
inline

Retrieves the lateral control input in radians.

Definition at line 302 of file FGRotor.h.

302{ return LateralCtrl; }

◆ GetLongitudinalCtrl()

double GetLongitudinalCtrl ( void  ) const
inline

Retrieves the longitudinal control input in radians.

Definition at line 304 of file FGRotor.h.

304{ return LongitudinalCtrl; }

◆ GetMu()

double GetMu ( void  ) const
inline

Retrieves the tip-speed (aka advance) ratio.

Definition at line 279 of file FGRotor.h.

279{ return mu; }

◆ GetNu()

double GetNu ( void  ) const
inline

Retrieves the induced inflow ratio.

Definition at line 281 of file FGRotor.h.

281{ return nu; }

◆ GetPhiDW()

double GetPhiDW ( void  ) const
inline

Downwash angle - positive values point leftward (given a horizontal spinning rotor)

Definition at line 292 of file FGRotor.h.

292{ return phi_downwash; }

◆ GetPowerRequired()

double GetPowerRequired ( void  ) const
inline

Returns the power required by the rotor.

Definition at line 251 of file FGRotor.h.

251{ return PowerRequired; }

◆ GetRPM()

double GetRPM ( void  ) const
inlinevirtual

Retrieves the RPMs of the rotor.

Reimplemented from FGThruster.

Definition at line 258 of file FGRotor.h.

258{ return RPM; }

◆ GetThetaDW()

double GetThetaDW ( void  ) const
inline

Downwash angle - positive values point forward (given a horizontal spinning rotor)

Definition at line 290 of file FGRotor.h.

290{ return theta_downwash; }

◆ GetThrust()

double GetThrust ( void  ) const
inline

Retrieves the thrust of the rotor.

Definition at line 267 of file FGRotor.h.

267{ return Thrust; }

◆ GetThrusterLabels()

string GetThrusterLabels ( int  id,
const std::string &  delimeter 
)
virtual

Reimplemented from FGThruster.

Definition at line 789 of file FGRotor.cpp.

790{
791
792 ostringstream buf;
793
794 buf << Name << " RPM (engine " << id << ")";
795
796 return buf.str();
797
798}

◆ GetThrusterValues()

string GetThrusterValues ( int  id,
const std::string &  delimeter 
)
virtual

Reimplemented from FGThruster.

Definition at line 802 of file FGRotor.cpp.

803{
804
805 ostringstream buf;
806
807 buf << RPM;
808
809 return buf.str();
810
811}

◆ GetTorque()

double GetTorque ( void  ) const
inline

Retrieves the torque.

Definition at line 287 of file FGRotor.h.

287{ return Torque; }

◆ GetVi()

double GetVi ( void  ) const
inline

Retrieves the induced velocity.

Definition at line 283 of file FGRotor.h.

283{ return v_induced; }

◆ SetCollectiveCtrl()

void SetCollectiveCtrl ( double  c)
inline

Sets the collective control input in radians.

Definition at line 307 of file FGRotor.h.

307{ CollectiveCtrl = c; }

◆ SetEngineRPM()

void SetEngineRPM ( double  rpm)
inlinevirtual

Reimplemented from FGThruster.

Definition at line 263 of file FGRotor.h.

263{EngineRPM = rpm;} //{ RPM = rpm/GearRatio; }

◆ SetGroundEffectScaleNorm()

void SetGroundEffectScaleNorm ( double  g)
inline

Sets the ground effect scaling factor.

Definition at line 297 of file FGRotor.h.

297{ GroundEffectScaleNorm = g; }

◆ SetLateralCtrl()

void SetLateralCtrl ( double  c)
inline

Sets the lateral control input in radians.

Definition at line 309 of file FGRotor.h.

309{ LateralCtrl = c; }

◆ SetLongitudinalCtrl()

void SetLongitudinalCtrl ( double  c)
inline

Sets the longitudinal control input in radians.

Definition at line 311 of file FGRotor.h.

311{ LongitudinalCtrl = c; }

◆ SetRPM()

void SetRPM ( double  rpm)
inlinevirtual

Reimplemented from FGThruster.

Definition at line 259 of file FGRotor.h.

259{ RPM = rpm; }

The documentation for this class was generated from the following files: