JSBSim Flight Dynamics Model 1.2.4 (07 Feb 2026)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGAuxiliary Class Reference

Detailed Description

Encapsulates various uncategorized scheduled functions.

Pilot sensed accelerations are calculated here. This is used for the coordinated turn ball instrument. Motion base platforms sometimes use the derivative of pilot sensed accelerations as the driving parameter, rather than straight accelerations.

The theory behind pilot-sensed calculations is presented:

For purposes of discussion and calculation, assume for a minute that the pilot is in space and motionless in inertial space. She will feel no accelerations. If the aircraft begins to accelerate along any axis or axes (without rotating), the pilot will sense those accelerations. If any rotational moment is applied, the pilot will sense an acceleration due to that motion in the amount:

[wdot X R] + [w X (w X R)] Term I Term II

where:

wdot = omegadot, the rotational acceleration rate vector w = omega, the rotational rate vector R = the vector from the aircraft CG to the pilot eyepoint

The sum total of these two terms plus the acceleration of the aircraft body axis gives the acceleration the pilot senses in inertial space. In the presence of a large body such as a planet, a gravity field also provides an accelerating attraction. This acceleration can be transformed from the reference frame of the planet so as to be expressed in the frame of reference of the aircraft. This gravity field accelerating attraction is felt by the pilot as a force on her tushie as she sits in her aircraft on the runway awaiting takeoff clearance.

In JSBSim the acceleration of the body frame in inertial space is given by the F = ma relation. If the vForces vector is divided by the aircraft mass, the acceleration vector is calculated. The term wdot is equivalent to the JSBSim vPQRdot vector, and the w parameter is equivalent to vPQR.

Author
Tony Peden, Jon Berndt

Definition at line 102 of file FGAuxiliary.h.

#include <FGAuxiliary.h>

+ Inheritance diagram for FGAuxiliary:
+ Collaboration diagram for FGAuxiliary:

Classes

struct  Inputs
 

Public Member Functions

 FGAuxiliary (FGFDMExec *Executive)
 Constructor.
 
 ~FGAuxiliary ()
 Destructor.
 
double Getadot (int unit) const
 
double Getadot (void) const
 
double GetAeroPQR (int axis) const
 
const FGColumnVector3GetAeroPQR (void) const
 
double GetAeroUVW (int idx) const
 
const FGColumnVector3GetAeroUVW (void) const
 
double Getalpha (int unit) const
 
double Getalpha (void) const
 
double Getbdot (int unit) const
 
double Getbdot (void) const
 
double Getbeta (int unit) const
 
double Getbeta (void) const
 
double GetDistanceRelativePosition (void) const
 
double GetEulerRates (int axis) const
 
const FGColumnVector3GetEulerRates (void) const
 
double GetGamma (int unit) const
 
double GetGamma (void) const
 
double GetGroundTrack (void) const
 
double GetHOverBCG (void) const
 
double GetHOverBMAC (void) const
 
double GetLatitudeRelativePosition (void) const
 
const FGLocationGetLocationVRP (void) const
 
double GetLongitudeRelativePosition (void) const
 
double GetMach (void) const
 Gets the Mach number.
 
double GetMachU (void) const
 The mach number calculated using the vehicle X axis velocity.
 
double GetMagBeta (int unit) const
 
double GetMagBeta (void) const
 
double GetNcg (int idx) const
 
const FGColumnVector3GetNcg (void) const
 
const FGColumnVector3GetNEUPositionFromStart () const
 
double GetNEUPositionFromStart (int idx) const
 The North East Up (NEU) frame is a local tangential frame fixed in the ECEF frame (i.e following the Earth's rotation).
 
double GetNlf (void) const
 
double GetNpilot (int idx) const
 
const FGColumnVector3GetNpilot (void) const
 
const FGColumnVector3GetNwcg (void) const
 
double GetNx (void) const
 The longitudinal acceleration in g's of the aircraft center of gravity.
 
double GetNy (void) const
 The lateral acceleration in g's of the aircraft center of gravity.
 
double GetNz (void) const
 The vertical acceleration in g's of the aircraft center of gravity.
 
double GetPilotAccel (int idx) const
 
const FGColumnVector3GetPilotAccel (void) const
 
double Getqbar (void) const
 
double GetqbarUV (void) const
 
double GetqbarUW (void) const
 
double GetReynoldsNumber (void) const
 
double GetTAT_C (void) const
 
const FGMatrix33GetTb2w (void) const
 Calculates and returns the body-to-wind axis transformation matrix.
 
double GetTotalPressure (void) const
 Returns the total pressure.
 
double GetTotalTemperature (void) const
 Returns the total temperature.
 
const FGMatrix33GetTw2b (void) const
 Calculates and returns the wind-to-body axis transformation matrix.
 
double GetVcalibratedFPS (void) const
 Returns Calibrated airspeed in feet/second.
 
double GetVcalibratedKTS (void) const
 Returns Calibrated airspeed in knots.
 
double GetVequivalentFPS (void) const
 Returns equivalent airspeed in feet/second.
 
double GetVequivalentKTS (void) const
 Returns equivalent airspeed in knots.
 
double GetVground (void) const
 Gets the ground speed in feet per second.
 
double GetVt (void) const
 Gets the magnitude of total vehicle velocity including wind effects in feet per second.
 
double GetVtrueFPS () const
 Returns the true airspeed in feet per second.
 
double GetVtrueKTS () const
 Returns the true airspeed in knots.
 
bool InitModel (void) override
 
double MachFromImpactPressure (double qc, double p) const
 Compute the Mach number from the differential pressure (qc) and the static pressure.
 
double MachFromVcalibrated (double vcas, double pressure) const
 Calculate the Mach number from the calibrated airspeed.Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).
 
double PitotTotalPressure (double mach, double pressure) const
 Compute the total pressure in front of the Pitot tube.
 
bool Run (bool Holding) override
 Runs the Auxiliary routines; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.
 
void SetAeroPQR (const FGColumnVector3 &tt)
 
void SetInitialState (const FGInitialCondition *)
 
double VcalibratedFromMach (double mach, double pressure) const
 Calculate the calibrated airspeed from the Mach number.
 
- Public Member Functions inherited from FGModel
 FGModel (FGFDMExec *)
 Constructor.
 
 ~FGModel () override
 Destructor.
 
virtual SGPath FindFullPathName (const SGPath &path) const
 
FGFDMExecGetExec (void)
 
const std::string & GetName (void)
 
unsigned int GetRate (void)
 Get the output rate for the model in frames.
 
bool InitModel (void) override
 
virtual bool Load (Element *el)
 
void SetPropertyManager (std::shared_ptr< FGPropertyManager > fgpm)
 
void SetRate (unsigned int tt)
 Set the ouput rate for the model in frames.
 
- Public Member Functions inherited from FGModelFunctions
std::string GetFunctionStrings (const std::string &delimeter) const
 Gets the strings for the current set of functions.
 
std::string GetFunctionValues (const std::string &delimeter) const
 Gets the function values.
 
std::shared_ptr< FGFunctionGetPreFunction (const std::string &name)
 Get one of the "pre" function.
 
bool Load (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void PostLoad (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void PreLoad (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void RunPostFunctions (void)
 
void RunPreFunctions (void)
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Public Attributes

struct JSBSim::FGAuxiliary::Inputs in
 

Additional Inherited Members

- Public Types inherited from FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 
- Static Public Member Functions inherited from FGJSBBase
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
- Static Public Attributes inherited from FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Protected Member Functions inherited from FGModel
bool Upload (Element *el, bool preLoad)
 Uploads this model in memory.
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from FGModel
unsigned int exe_ctr
 
FGFDMExecFDMExec
 
std::string Name
 
std::shared_ptr< FGPropertyManager > PropertyManager
 
unsigned int rate
 
- Protected Attributes inherited from FGModelFunctions
FGPropertyReader LocalProperties
 
std::vector< std::shared_ptr< FGFunction > > PostFunctions
 
std::vector< std::shared_ptr< FGFunction > > PreFunctions
 
- Static Protected Attributes inherited from FGJSBBase
static constexpr double radtodeg = 180. / M_PI
 
static constexpr double degtorad = M_PI / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double fttom = 0.3048
 
static constexpr double ktstofps = 1852./(3600*fttom)
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 

Constructor & Destructor Documentation

◆ FGAuxiliary()

FGAuxiliary ( FGFDMExec Executive)
explicit

Constructor.

Parameters
Executivea pointer to the parent executive object

Definition at line 61 of file FGAuxiliary.cpp.

61 : FGModel(fdmex)
62{
63 Name = "FGAuxiliary";
64 pt = FGAtmosphere::StdDaySLpressure; // ISA SL pressure
65 tat = FGAtmosphere::StdDaySLtemperature; // ISA SL temperature
66 tatc = RankineToCelsius(tat);
67
68 vcas = veas = 0.0;
69 qbar = qbarUW = qbarUV = 0.0;
70 Mach = MachU = 0.0;
71 alpha = beta = 0.0;
72 adot = bdot = 0.0;
73 gamma = Vt = Vground = 0.0;
74 psigt = 0.0;
75 hoverbmac = hoverbcg = 0.0;
76 Re = 0.0;
77 Nx = Ny = Nz = 0.0;
78
79 vPilotAccel.InitMatrix();
80 vPilotAccelN.InitMatrix();
81 vAeroUVW.InitMatrix();
82 vAeroPQR.InitMatrix();
83 vMachUVW.InitMatrix();
84 vEulerRates.InitMatrix();
85 vNEUFromStart.InitMatrix();
86 NEUCalcValid = false;
87
88 bind();
89
90 Debug(0);
91}
static constexpr double RankineToCelsius(double rankine)
Converts from degrees Rankine to degrees Celsius.
Definition FGJSBBase.h:199
FGModel(FGFDMExec *)
Constructor.
Definition FGModel.cpp:57
+ Here is the call graph for this function:

◆ ~FGAuxiliary()

Destructor.

Definition at line 136 of file FGAuxiliary.cpp.

137{
138 Debug(1);
139}

Member Function Documentation

◆ Getadot() [1/2]

double Getadot ( int  unit) const
inline

Definition at line 217 of file FGAuxiliary.h.

217 { if (unit == inDegrees) return adot*radtodeg;
218 else return BadUnits(); }

◆ Getadot() [2/2]

double Getadot ( void  ) const
inline

Definition at line 209 of file FGAuxiliary.h.

209{ return adot; }

◆ GetAeroPQR() [1/2]

double GetAeroPQR ( int  axis) const
inline

Definition at line 193 of file FGAuxiliary.h.

193{ return vAeroPQR(axis); }

◆ GetAeroPQR() [2/2]

const FGColumnVector3 & GetAeroPQR ( void  ) const
inline

Definition at line 201 of file FGAuxiliary.h.

201{ return vAeroPQR; }

◆ GetAeroUVW() [1/2]

double GetAeroUVW ( int  idx) const
inline

Definition at line 206 of file FGAuxiliary.h.

206{ return vAeroUVW(idx); }

◆ GetAeroUVW() [2/2]

const FGColumnVector3 & GetAeroUVW ( void  ) const
inline

Definition at line 203 of file FGAuxiliary.h.

203{ return vAeroUVW; }

◆ Getalpha() [1/2]

double Getalpha ( int  unit) const
inline

Definition at line 213 of file FGAuxiliary.h.

213 { if (unit == inDegrees) return alpha*radtodeg;
214 else return BadUnits(); }

◆ Getalpha() [2/2]

double Getalpha ( void  ) const
inline

Definition at line 207 of file FGAuxiliary.h.

207{ return alpha; }

◆ Getbdot() [1/2]

double Getbdot ( int  unit) const
inline

Definition at line 219 of file FGAuxiliary.h.

219 { if (unit == inDegrees) return bdot*radtodeg;
220 else return BadUnits(); }

◆ Getbdot() [2/2]

double Getbdot ( void  ) const
inline

Definition at line 210 of file FGAuxiliary.h.

210{ return bdot; }

◆ Getbeta() [1/2]

double Getbeta ( int  unit) const
inline

Definition at line 215 of file FGAuxiliary.h.

215 { if (unit == inDegrees) return beta*radtodeg;
216 else return BadUnits(); }

◆ Getbeta() [2/2]

double Getbeta ( void  ) const
inline

Definition at line 208 of file FGAuxiliary.h.

208{ return beta; }

◆ GetDistanceRelativePosition()

double GetDistanceRelativePosition ( void  ) const

Definition at line 383 of file FGAuxiliary.cpp.

384{
385 auto ic = FDMExec->GetIC();
386 return in.vLocation.GetDistanceTo(ic->GetLongitudeRadIC(),
387 ic->GetGeodLatitudeRadIC())*fttom;
388}
std::shared_ptr< FGInitialCondition > GetIC(void) const
Returns a pointer to the FGInitialCondition object.
Definition FGFDMExec.h:389
double GetDistanceTo(double target_longitude, double target_latitude) const
Get the geodetic distance between the current location and a given location.

◆ GetEulerRates() [1/2]

double GetEulerRates ( int  axis) const
inline

Definition at line 194 of file FGAuxiliary.h.

194{ return vEulerRates(axis); }

◆ GetEulerRates() [2/2]

const FGColumnVector3 & GetEulerRates ( void  ) const
inline

Definition at line 202 of file FGAuxiliary.h.

202{ return vEulerRates; }

◆ GetGamma() [1/2]

double GetGamma ( int  unit) const
inline

Definition at line 272 of file FGAuxiliary.h.

272 {
273 if (unit == inDegrees) return gamma*radtodeg;
274 else return BadUnits();
275 }

◆ GetGamma() [2/2]

double GetGamma ( void  ) const
inline

Definition at line 269 of file FGAuxiliary.h.

269{ return gamma; }

◆ GetGroundTrack()

double GetGroundTrack ( void  ) const
inline

Definition at line 270 of file FGAuxiliary.h.

270{ return psigt; }

◆ GetHOverBCG()

double GetHOverBCG ( void  ) const
inline

Definition at line 266 of file FGAuxiliary.h.

266{ return hoverbcg; }

◆ GetHOverBMAC()

double GetHOverBMAC ( void  ) const
inline

Definition at line 267 of file FGAuxiliary.h.

267{ return hoverbmac; }

◆ GetLatitudeRelativePosition()

double GetLatitudeRelativePosition ( void  ) const

Definition at line 375 of file FGAuxiliary.cpp.

376{
377 return in.vLocation.GetDistanceTo(in.vLocation.GetLongitude(),
378 FDMExec->GetIC()->GetGeodLatitudeRadIC())*fttom;
379}
double GetLongitude() const
Get the longitude.
Definition FGLocation.h:234

◆ GetLocationVRP()

const FGLocation & GetLocationVRP ( void  ) const
inline

Definition at line 204 of file FGAuxiliary.h.

204{ return vLocationVRP; }

◆ GetLongitudeRelativePosition()

double GetLongitudeRelativePosition ( void  ) const

Definition at line 367 of file FGAuxiliary.cpp.

368{
369 return in.vLocation.GetDistanceTo(FDMExec->GetIC()->GetLongitudeRadIC(),
370 in.vLocation.GetGeodLatitudeRad())*fttom;
371}
double GetGeodLatitudeRad(void) const
Get the GEODETIC latitude in radians.
Definition FGLocation.h:258

◆ GetMach()

double GetMach ( void  ) const
inline

Gets the Mach number.

Definition at line 250 of file FGAuxiliary.h.

250{ return Mach; }

◆ GetMachU()

double GetMachU ( void  ) const
inline

The mach number calculated using the vehicle X axis velocity.

Definition at line 253 of file FGAuxiliary.h.

253{ return MachU; }

◆ GetMagBeta() [1/2]

double GetMagBeta ( int  unit) const
inline

Definition at line 221 of file FGAuxiliary.h.

221 { if (unit == inDegrees) return fabs(beta)*radtodeg;
222 else return BadUnits(); }

◆ GetMagBeta() [2/2]

double GetMagBeta ( void  ) const
inline

Definition at line 211 of file FGAuxiliary.h.

211{ return fabs(beta); }

◆ GetNcg() [1/2]

double GetNcg ( int  idx) const
inline

Definition at line 199 of file FGAuxiliary.h.

199{ return vNcg(idx); }

◆ GetNcg() [2/2]

const FGColumnVector3 & GetNcg ( void  ) const
inline

Definition at line 198 of file FGAuxiliary.h.

198{ return vNcg; }

◆ GetNEUPositionFromStart() [1/2]

const FGColumnVector3 & GetNEUPositionFromStart ( ) const

Definition at line 392 of file FGAuxiliary.cpp.

393{
394 if (!NEUCalcValid) {
395 // Position tracking in local frame with local frame origin at lat, lon of initial condition
396 // and at 0 altitude relative to the reference ellipsoid. Position is NEU (North, East, UP) in feet.
397 vNEUFromStart = NEUStartLocation.LocationToLocal(in.vLocation);
398 vNEUFromStart(3) *= -1.0; // Flip sign for Up, so + for altitude above reference ellipsoid
399 NEUCalcValid = true;
400 }
401
402 return vNEUFromStart;
403}
FGColumnVector3 LocationToLocal(const FGColumnVector3 &ecvec) const
Conversion from a location in the earth centered and fixed frame to local horizontal frame coordinate...
Definition FGLocation.h:336

◆ GetNEUPositionFromStart() [2/2]

double GetNEUPositionFromStart ( int  idx) const
inline

The North East Up (NEU) frame is a local tangential frame fixed in the ECEF frame (i.e following the Earth's rotation).

The NEU frame's origin is fixed at the aircrat's initial lat, lon position and at an altitude of 0 ft relative to the reference ellipsoid. The NEU frame is a left-handed coordinate system, unlike the NED frame. So beware of differences when computing cross products.

Definition at line 289 of file FGAuxiliary.h.

289{ return (GetNEUPositionFromStart())(idx); }
double GetNEUPositionFromStart(int idx) const
The North East Up (NEU) frame is a local tangential frame fixed in the ECEF frame (i....
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ GetNlf()

double GetNlf ( void  ) const

Definition at line 357 of file FGAuxiliary.cpp.

358{
359 if (in.Mass != 0)
360 return (in.vFw(3))/(in.Mass*slugtolb);
361 else
362 return 0.;
363}
static constexpr double slugtolb
Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can a...
Definition FGJSBBase.h:313

◆ GetNpilot() [1/2]

double GetNpilot ( int  idx) const
inline

Definition at line 192 of file FGAuxiliary.h.

192{ return vPilotAccelN(idx); }

◆ GetNpilot() [2/2]

const FGColumnVector3 & GetNpilot ( void  ) const
inline

Definition at line 197 of file FGAuxiliary.h.

197{ return vPilotAccelN; }

◆ GetNwcg()

const FGColumnVector3 & GetNwcg ( void  ) const
inline

Definition at line 264 of file FGAuxiliary.h.

264{ return vNwcg; }

◆ GetNx()

double GetNx ( void  ) const
inline

The longitudinal acceleration in g's of the aircraft center of gravity.

Definition at line 256 of file FGAuxiliary.h.

256{ return Nx; }

◆ GetNy()

double GetNy ( void  ) const
inline

The lateral acceleration in g's of the aircraft center of gravity.

Definition at line 259 of file FGAuxiliary.h.

259{ return Ny; }

◆ GetNz()

double GetNz ( void  ) const
inline

The vertical acceleration in g's of the aircraft center of gravity.

Definition at line 262 of file FGAuxiliary.h.

262{ return Nz; }

◆ GetPilotAccel() [1/2]

double GetPilotAccel ( int  idx) const
inline

Definition at line 191 of file FGAuxiliary.h.

191{ return vPilotAccel(idx); }

◆ GetPilotAccel() [2/2]

const FGColumnVector3 & GetPilotAccel ( void  ) const
inline

Definition at line 196 of file FGAuxiliary.h.

196{ return vPilotAccel; }

◆ Getqbar()

double Getqbar ( void  ) const
inline

Definition at line 234 of file FGAuxiliary.h.

234{ return qbar; }

◆ GetqbarUV()

double GetqbarUV ( void  ) const
inline

Definition at line 236 of file FGAuxiliary.h.

236{ return qbarUV; }

◆ GetqbarUW()

double GetqbarUW ( void  ) const
inline

Definition at line 235 of file FGAuxiliary.h.

235{ return qbarUW; }

◆ GetReynoldsNumber()

double GetReynoldsNumber ( void  ) const
inline

Definition at line 237 of file FGAuxiliary.h.

237{ return Re; }

◆ GetTAT_C()

double GetTAT_C ( void  ) const
inline

Definition at line 189 of file FGAuxiliary.h.

189{ return tatc; }

◆ GetTb2w()

const FGMatrix33 & GetTb2w ( void  ) const
inline

Calculates and returns the body-to-wind axis transformation matrix.

Returns
a reference to the wind-to-body transformation matrix.

Definition at line 232 of file FGAuxiliary.h.

232{ return mTb2w; }

◆ GetTotalPressure()

double GetTotalPressure ( void  ) const
inline

Returns the total pressure.

Total pressure is freestream total pressure for subsonic only. For supersonic it is the 1D total pressure behind a normal shock.

Definition at line 178 of file FGAuxiliary.h.

178{ return pt; }

◆ GetTotalTemperature()

double GetTotalTemperature ( void  ) const
inline

Returns the total temperature.

The total temperature ("tat", isentropic flow) is calculated:

tat = in.Temperature*(1 + 0.2*Mach*Mach)

(where "in.Temperature" is standard temperature calculated by the atmosphere model)

Definition at line 188 of file FGAuxiliary.h.

188{ return tat; }

◆ GetTw2b()

const FGMatrix33 & GetTw2b ( void  ) const
inline

Calculates and returns the wind-to-body axis transformation matrix.

Returns
a reference to the wind-to-body transformation matrix.

Definition at line 227 of file FGAuxiliary.h.

227{ return mTw2b; }

◆ GetVcalibratedFPS()

double GetVcalibratedFPS ( void  ) const
inline

Returns Calibrated airspeed in feet/second.

Definition at line 162 of file FGAuxiliary.h.

162{ return vcas; }

◆ GetVcalibratedKTS()

double GetVcalibratedKTS ( void  ) const
inline

Returns Calibrated airspeed in knots.

Definition at line 164 of file FGAuxiliary.h.

164{ return vcas*fpstokts; }

◆ GetVequivalentFPS()

double GetVequivalentFPS ( void  ) const
inline

Returns equivalent airspeed in feet/second.

Definition at line 166 of file FGAuxiliary.h.

166{ return veas; }

◆ GetVequivalentKTS()

double GetVequivalentKTS ( void  ) const
inline

Returns equivalent airspeed in knots.

Definition at line 168 of file FGAuxiliary.h.

168{ return veas*fpstokts; }

◆ GetVground()

double GetVground ( void  ) const
inline

Gets the ground speed in feet per second.

The magnitude is the square root of the sum of the squares (RSS) of the vehicle north and east velocity components.

Returns
The magnitude of the vehicle velocity in the horizontal plane.

Definition at line 247 of file FGAuxiliary.h.

247{ return Vground; }

◆ GetVt()

double GetVt ( void  ) const
inline

Gets the magnitude of total vehicle velocity including wind effects in feet per second.

Definition at line 241 of file FGAuxiliary.h.

241{ return Vt; }

◆ GetVtrueFPS()

double GetVtrueFPS ( ) const
inline

Returns the true airspeed in feet per second.

Definition at line 170 of file FGAuxiliary.h.

170{ return Vt; }

◆ GetVtrueKTS()

double GetVtrueKTS ( ) const
inline

Returns the true airspeed in knots.

Definition at line 172 of file FGAuxiliary.h.

172{ return Vt * fpstokts; }

◆ InitModel()

bool InitModel ( void  )
overridevirtual

Reimplemented from FGModelFunctions.

Definition at line 95 of file FGAuxiliary.cpp.

96{
97 if (!FGModel::InitModel()) return false;
98
99 pt = in.Pressure;
100 tat = in.Temperature;
101 tatc = RankineToCelsius(tat);
102
103 vcas = veas = 0.0;
104 qbar = qbarUW = qbarUV = 0.0;
105 Mach = MachU = 0.0;
106 alpha = beta = 0.0;
107 adot = bdot = 0.0;
108 gamma = Vt = Vground = 0.0;
109 psigt = 0.0;
110 hoverbmac = hoverbcg = 0.0;
111 Re = 0.0;
112 Nz = Ny = 0.0;
113
114 vPilotAccel.InitMatrix();
115 vPilotAccelN.InitMatrix();
116 vAeroUVW.InitMatrix();
117 vAeroPQR.InitMatrix();
118 vMachUVW.InitMatrix();
119 vEulerRates.InitMatrix();
120 vNEUFromStart.InitMatrix();
121 NEUCalcValid = false;
122
123 return true;
124}

◆ MachFromImpactPressure()

double MachFromImpactPressure ( double  qc,
double  p 
) const

Compute the Mach number from the differential pressure (qc) and the static pressure.

Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).

Parameters
qcThe differential/impact pressure
pressurePressure in psf
Returns
The Mach number

Definition at line 280 of file FGAuxiliary.cpp.

281{
282 constexpr double SHRatio = FGAtmosphere::SHRatio;
283 constexpr double a = 2.0/(SHRatio-1.0);
284 constexpr double b = (SHRatio-1.0)/SHRatio;
285 constexpr double c = 2.0/b;
286 constexpr double d = 0.5*a;
287 const double coeff = pow(0.5*(SHRatio+1.0), -0.25*c)
288 * pow(0.5*(SHRatio+1.0)/SHRatio, -0.5*d);
289
290 double A = qc / pressure + 1;
291 double M = sqrt(a*(pow(A, b) - 1.0)); // Equation (4.12)
292
293 if (M > 1.0)
294 for (unsigned int i = 0; i<10; i++)
295 M = coeff*sqrt(A*pow(1 - 1.0 / (c*M*M), d)); // Equation (4.17)
296
297 return M;
298}
+ Here is the caller graph for this function:

◆ MachFromVcalibrated()

double MachFromVcalibrated ( double  vcas,
double  pressure 
) const

Calculate the Mach number from the calibrated airspeed.Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).

Parameters
vcasThe calibrated airspeed (CAS) in ft/s
pressurePressure in psf
Returns
The Mach number

Definition at line 310 of file FGAuxiliary.cpp.

311{
312 constexpr double StdDaySLpressure = FGAtmosphere::StdDaySLpressure;
313 double qc = PitotTotalPressure(vcas / in.StdDaySLsoundspeed, StdDaySLpressure) - StdDaySLpressure;
314 return MachFromImpactPressure(qc, pressure);
315}
double PitotTotalPressure(double mach, double pressure) const
Compute the total pressure in front of the Pitot tube.
double MachFromImpactPressure(double qc, double p) const
Compute the Mach number from the differential pressure (qc) and the static pressure.
+ Here is the call graph for this function:

◆ PitotTotalPressure()

double PitotTotalPressure ( double  mach,
double  pressure 
) const

Compute the total pressure in front of the Pitot tube.

It uses the Rayleigh formula for supersonic speeds (See "Introduction to Aerodynamics of a Compressible Fluid - H.W. Liepmann, A.E. Puckett - Wiley & sons (1947)" ยง5.4 pp 75-80)

Parameters
machThe Mach number
pressurePressure in psf
Returns
The total pressure in front of the Pitot tube in psf

Definition at line 243 of file FGAuxiliary.cpp.

244{
245 constexpr double SHRatio = FGAtmosphere::SHRatio;
246 constexpr double a = (SHRatio-1.0) / 2.0;
247 constexpr double b = SHRatio / (SHRatio-1.0);
248 constexpr double c = 2.0*b;
249 constexpr double d = 1.0 / (SHRatio-1.0);
250 const double coeff = pow(0.5*(SHRatio+1.0), b)
251 * pow((SHRatio+1.0)/(SHRatio-1.0), d);
252
253 if (mach < 0) return pressure;
254 if (mach < 1) //calculate total pressure assuming isentropic flow
255 return pressure*pow((1.0 + a*mach*mach), b);
256 else {
257 // Shock in front of pitot tube, we'll assume its normal and use the
258 // Rayleigh Pitot Tube Formula, i.e. the ratio of total pressure behind the
259 // shock to the static pressure in front of the normal shock assumption
260 // should not be a bad one -- most supersonic aircraft place the pitot probe
261 // out front so that it is the forward most point on the aircraft.
262 // The real shock would, of course, take on something like the shape of a
263 // rounded-off cone but, here again, the assumption should be good since the
264 // opening of the pitot probe is very small and, therefore, the effects of
265 // the shock curvature should be small as well. AFAIK, this approach is
266 // fairly well accepted within the aerospace community
267
268 // The denominator below is zero for Mach ~ 0.38, for which
269 // we'll never be here, so we're safe
270
271 return pressure*coeff*pow(mach, c)/pow(c*mach*mach-1.0, d);
272 }
273}
+ Here is the caller graph for this function:

◆ Run()

bool Run ( bool  Holding)
overridevirtual

Runs the Auxiliary routines; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.

Parameters
Holdingif true, the executive has been directed to hold the sim from advancing time. Some models may ignore this flag, such as the Input model, which may need to be active to listen on a socket for the "Resume" command to be given.
Returns
false if no error

Reimplemented from FGModel.

Definition at line 143 of file FGAuxiliary.cpp.

144{
145 if (FGModel::Run(Holding)) return true; // return true if error returned from base class
146 if (Holding) return false;
147
148 // Rotation
149
150 vEulerRates(eTht) = in.vPQR(eQ)*in.CosPhi - in.vPQR(eR)*in.SinPhi;
151 if (in.CosTht != 0.0) {
152 vEulerRates(ePsi) = (in.vPQR(eQ)*in.SinPhi + in.vPQR(eR)*in.CosPhi)/in.CosTht;
153 vEulerRates(ePhi) = in.vPQR(eP) + vEulerRates(ePsi)*in.SinTht;
154 }
155
156 // Combine the wind speed with aircraft speed to obtain wind relative speed
157 vAeroPQR = in.vPQR - in.TurbPQR;
158 vAeroUVW = in.vUVW - in.Tl2b * in.TotalWindNED;
159
160 alpha = beta = adot = bdot = 0;
161 double AeroU2 = vAeroUVW(eU)*vAeroUVW(eU);
162 double AeroV2 = vAeroUVW(eV)*vAeroUVW(eV);
163 double AeroW2 = vAeroUVW(eW)*vAeroUVW(eW);
164 double mUW = AeroU2 + AeroW2;
165
166 double Vt2 = mUW + AeroV2;
167 Vt = sqrt(Vt2);
168
169 if ( Vt > 0.001 ) {
170 beta = atan2(vAeroUVW(eV), sqrt(mUW));
171
172 if ( mUW >= 1E-6 ) {
173 alpha = atan2(vAeroUVW(eW), vAeroUVW(eU));
174 double Vtdot = (vAeroUVW(eU)*in.vUVWdot(eU) + vAeroUVW(eV)*in.vUVWdot(eV) + vAeroUVW(eW)*in.vUVWdot(eW))/Vt;
175 adot = (vAeroUVW(eU)*in.vUVWdot(eW) - vAeroUVW(eW)*in.vUVWdot(eU))/mUW;
176 bdot = (in.vUVWdot(eV)*Vt - vAeroUVW(eV)*Vtdot)/(Vt*sqrt(mUW));
177 }
178 }
179
180 UpdateWindMatrices();
181
182 Re = Vt * in.Wingchord / in.KinematicViscosity;
183
184 double densityD2 = 0.5*in.Density;
185
186 qbar = densityD2 * Vt2;
187 qbarUW = densityD2 * (mUW);
188 qbarUV = densityD2 * (AeroU2 + AeroV2);
189 Mach = Vt / in.SoundSpeed;
190 MachU = vMachUVW(eU) = vAeroUVW(eU) / in.SoundSpeed;
191 vMachUVW(eV) = vAeroUVW(eV) / in.SoundSpeed;
192 vMachUVW(eW) = vAeroUVW(eW) / in.SoundSpeed;
193
194 Vground = sqrt( in.vVel(eNorth)*in.vVel(eNorth) + in.vVel(eEast)*in.vVel(eEast) );
195
196 psigt = atan2(in.vVel(eEast), in.vVel(eNorth));
197 if (psigt < 0.0) psigt += 2*M_PI;
198 gamma = atan2(-in.vVel(eDown), Vground);
199
200 tat = in.Temperature*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow
201 tatc = RankineToCelsius(tat);
202
203 pt = PitotTotalPressure(Mach, in.Pressure);
204
205 if (abs(Mach) > 0.0) {
206 vcas = VcalibratedFromMach(Mach, in.Pressure);
207 veas = sqrt(2 * qbar / FGAtmosphere::StdDaySLdensity);
208 }
209 else
210 vcas = veas = 0.0;
211
212 vPilotAccel.InitMatrix();
213 vNcg = in.vBodyAccel/in.StandardGravity;
214 // Nz is Acceleration in "g's", along normal axis (-Z body axis)
215 Nz = -vNcg(eZ);
216 Ny = vNcg(eY);
217 Nx = vNcg(eX);
218 vPilotAccel = in.vBodyAccel + in.vPQRidot * in.ToEyePt;
219 vPilotAccel += in.vPQRi * (in.vPQRi * in.ToEyePt);
220
221 vNwcg = mTb2w * vNcg;
222 vNwcg(eZ) = 1.0 - vNwcg(eZ);
223
224 vPilotAccelN = vPilotAccel / in.StandardGravity;
225
226 // VRP computation
227 vLocationVRP = in.vLocation.LocalToLocation( in.Tb2l * in.VRPBody );
228
229 // Recompute some derived values now that we know the dependent parameters values ...
230 hoverbcg = in.DistanceAGL / in.Wingspan;
231
232 FGColumnVector3 vMac = in.Tb2l * in.RPBody;
233 hoverbmac = (in.DistanceAGL - vMac(3)) / in.Wingspan;
234
235 // New timestep so vNEUFromStart is no longer valid since we only calculate it on demand
236 NEUCalcValid = false;
237
238 return false;
239}
double VcalibratedFromMach(double mach, double pressure) const
Calculate the calibrated airspeed from the Mach number.
FGLocation LocalToLocation(const FGColumnVector3 &lvec) const
Conversion from Local frame coordinates to a location in the earth centered and fixed frame.
Definition FGLocation.h:326
virtual bool Run(bool Holding)
Runs the model; called by the Executive.
Definition FGModel.cpp:89
+ Here is the call graph for this function:

◆ SetAeroPQR()

void SetAeroPQR ( const FGColumnVector3 tt)
inline

Definition at line 292 of file FGAuxiliary.h.

292{ vAeroPQR = tt; }

◆ SetInitialState()

void SetInitialState ( const FGInitialCondition ic)

Definition at line 128 of file FGAuxiliary.cpp.

129{
130 NEUStartLocation = ic->GetPosition();
131 NEUStartLocation.SetPositionGeodetic(NEUStartLocation.GetLongitude(), NEUStartLocation.GetGeodLatitudeRad(), 0.0);
132}
void SetPositionGeodetic(double lon, double lat, double height)
Sets the longitude, latitude and the distance above the reference spheroid.

◆ VcalibratedFromMach()

double VcalibratedFromMach ( double  mach,
double  pressure 
) const

Calculate the calibrated airspeed from the Mach number.

Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).

Parameters
machThe Mach number
pressurePressure in psf
Returns
The calibrated airspeed (CAS) in ft/s

Definition at line 302 of file FGAuxiliary.cpp.

303{
304 double qc = PitotTotalPressure(mach, pressure) - pressure;
305 return in.StdDaySLsoundspeed * MachFromImpactPressure(qc, FGAtmosphere::StdDaySLpressure);
306}
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

The documentation for this class was generated from the following files: