Loading [MathJax]/extensions/tex2jax.js
JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
All Classes Functions Variables Enumerations Enumerator Friends Pages
FGAuxiliary Class Reference

Detailed Description

Encapsulates various uncategorized scheduled functions.

Pilot sensed accelerations are calculated here. This is used for the coordinated turn ball instrument. Motion base platforms sometimes use the derivative of pilot sensed accelerations as the driving parameter, rather than straight accelerations.

The theory behind pilot-sensed calculations is presented:

For purposes of discussion and calculation, assume for a minute that the pilot is in space and motionless in inertial space. She will feel no accelerations. If the aircraft begins to accelerate along any axis or axes (without rotating), the pilot will sense those accelerations. If any rotational moment is applied, the pilot will sense an acceleration due to that motion in the amount:

[wdot X R] + [w X (w X R)] Term I Term II

where:

wdot = omegadot, the rotational acceleration rate vector w = omega, the rotational rate vector R = the vector from the aircraft CG to the pilot eyepoint

The sum total of these two terms plus the acceleration of the aircraft body axis gives the acceleration the pilot senses in inertial space. In the presence of a large body such as a planet, a gravity field also provides an accelerating attraction. This acceleration can be transformed from the reference frame of the planet so as to be expressed in the frame of reference of the aircraft. This gravity field accelerating attraction is felt by the pilot as a force on her tushie as she sits in her aircraft on the runway awaiting takeoff clearance.

In JSBSim the acceleration of the body frame in inertial space is given by the F = ma relation. If the vForces vector is divided by the aircraft mass, the acceleration vector is calculated. The term wdot is equivalent to the JSBSim vPQRdot vector, and the w parameter is equivalent to vPQR.

Author
Tony Peden, Jon Berndt

Definition at line 100 of file FGAuxiliary.h.

#include <FGAuxiliary.h>

+ Inheritance diagram for FGAuxiliary:
+ Collaboration diagram for FGAuxiliary:

Classes

struct  Inputs
 

Public Member Functions

 FGAuxiliary (FGFDMExec *Executive)
 Constructor.
 
 ~FGAuxiliary ()
 Destructor.
 
double Getadot (int unit) const
 
double Getadot (void) const
 
double GetAeroPQR (int axis) const
 
const FGColumnVector3GetAeroPQR (void) const
 
double GetAeroUVW (int idx) const
 
const FGColumnVector3GetAeroUVW (void) const
 
double Getalpha (int unit) const
 
double Getalpha (void) const
 
double Getbdot (int unit) const
 
double Getbdot (void) const
 
double Getbeta (int unit) const
 
double Getbeta (void) const
 
double GetDistanceRelativePosition (void) const
 
double GetEulerRates (int axis) const
 
const FGColumnVector3GetEulerRates (void) const
 
double GetGamma (int unit) const
 
double GetGamma (void) const
 
double GetGroundTrack (void) const
 
double GetHOverBCG (void) const
 
double GetHOverBMAC (void) const
 
double GetLatitudeRelativePosition (void) const
 
const FGLocationGetLocationVRP (void) const
 
double GetLongitudeRelativePosition (void) const
 
double GetMach (void) const
 Gets the Mach number.
 
double GetMachU (void) const
 The mach number calculated using the vehicle X axis velocity.
 
double GetMagBeta (int unit) const
 
double GetMagBeta (void) const
 
double GetNcg (int idx) const
 
const FGColumnVector3GetNcg (void) const
 
double GetNlf (void) const
 
double GetNpilot (int idx) const
 
const FGColumnVector3GetNpilot (void) const
 
const FGColumnVector3GetNwcg (void) const
 
double GetNx (void) const
 The longitudinal acceleration in g's of the aircraft center of gravity.
 
double GetNy (void) const
 The lateral acceleration in g's of the aircraft center of gravity.
 
double GetNz (void) const
 The vertical acceleration in g's of the aircraft center of gravity.
 
double GetPilotAccel (int idx) const
 
const FGColumnVector3GetPilotAccel (void) const
 
double Getqbar (void) const
 
double GetqbarUV (void) const
 
double GetqbarUW (void) const
 
double GetReynoldsNumber (void) const
 
double GetTAT_C (void) const
 
const FGMatrix33GetTb2w (void) const
 Calculates and returns the body-to-wind axis transformation matrix.
 
double GetTotalPressure (void) const
 Returns the total pressure.
 
double GetTotalTemperature (void) const
 Returns the total temperature.
 
const FGMatrix33GetTw2b (void) const
 Calculates and returns the wind-to-body axis transformation matrix.
 
double GetVcalibratedFPS (void) const
 Returns Calibrated airspeed in feet/second.
 
double GetVcalibratedKTS (void) const
 Returns Calibrated airspeed in knots.
 
double GetVequivalentFPS (void) const
 Returns equivalent airspeed in feet/second.
 
double GetVequivalentKTS (void) const
 Returns equivalent airspeed in knots.
 
double GetVground (void) const
 Gets the ground speed in feet per second.
 
double GetVt (void) const
 Gets the magnitude of total vehicle velocity including wind effects in feet per second.
 
double GetVtrueFPS () const
 Returns the true airspeed in feet per second.
 
double GetVtrueKTS () const
 Returns the true airspeed in knots.
 
bool InitModel (void) override
 
double MachFromImpactPressure (double qc, double p) const
 Compute the Mach number from the differential pressure (qc) and the static pressure.
 
double MachFromVcalibrated (double vcas, double pressure) const
 Calculate the Mach number from the calibrated airspeed.Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).
 
double PitotTotalPressure (double mach, double pressure) const
 Compute the total pressure in front of the Pitot tube.
 
bool Run (bool Holding) override
 Runs the Auxiliary routines; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.
 
void SetAeroPQR (const FGColumnVector3 &tt)
 
double VcalibratedFromMach (double mach, double pressure) const
 Calculate the calibrated airspeed from the Mach number.
 
- Public Member Functions inherited from FGModel
 FGModel (FGFDMExec *)
 Constructor.
 
 ~FGModel () override
 Destructor.
 
virtual SGPath FindFullPathName (const SGPath &path) const
 
FGFDMExecGetExec (void)
 
const std::string & GetName (void)
 
unsigned int GetRate (void)
 Get the output rate for the model in frames.
 
bool InitModel (void) override
 
virtual bool Load (Element *el)
 
void SetPropertyManager (std::shared_ptr< FGPropertyManager > fgpm)
 
void SetRate (unsigned int tt)
 Set the ouput rate for the model in frames.
 
- Public Member Functions inherited from FGModelFunctions
std::string GetFunctionStrings (const std::string &delimeter) const
 Gets the strings for the current set of functions.
 
std::string GetFunctionValues (const std::string &delimeter) const
 Gets the function values.
 
std::shared_ptr< FGFunctionGetPreFunction (const std::string &name)
 Get one of the "pre" function.
 
bool Load (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void PostLoad (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void PreLoad (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void RunPostFunctions (void)
 
void RunPreFunctions (void)
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Public Attributes

struct JSBSim::FGAuxiliary::Inputs in
 

Additional Inherited Members

- Public Types inherited from FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 
- Static Public Member Functions inherited from FGJSBBase
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
- Static Public Attributes inherited from FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Protected Member Functions inherited from FGModel
bool Upload (Element *el, bool preLoad)
 Uploads this model in memory.
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from FGModel
unsigned int exe_ctr
 
FGFDMExecFDMExec
 
std::string Name
 
std::shared_ptr< FGPropertyManagerPropertyManager
 
unsigned int rate
 
- Protected Attributes inherited from FGModelFunctions
FGPropertyReader LocalProperties
 
std::vector< std::shared_ptr< FGFunction > > PostFunctions
 
std::vector< std::shared_ptr< FGFunction > > PreFunctions
 
- Static Protected Attributes inherited from FGJSBBase
static constexpr double radtodeg = 180. / M_PI
 
static constexpr double degtorad = M_PI / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double fttom = 0.3048
 
static constexpr double ktstofps = 1852./(3600*fttom)
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 

Constructor & Destructor Documentation

◆ FGAuxiliary()

FGAuxiliary ( FGFDMExec Executive)
explicit

Constructor.

Parameters
Executivea pointer to the parent executive object

Definition at line 61 of file FGAuxiliary.cpp.

61 : FGModel(fdmex)
62{
63 Name = "FGAuxiliary";
64 pt = FGAtmosphere::StdDaySLpressure; // ISA SL pressure
65 tat = FGAtmosphere::StdDaySLtemperature; // ISA SL temperature
66 tatc = RankineToCelsius(tat);
67
68 vcas = veas = 0.0;
69 qbar = qbarUW = qbarUV = 0.0;
70 Mach = MachU = 0.0;
71 alpha = beta = 0.0;
72 adot = bdot = 0.0;
73 gamma = Vt = Vground = 0.0;
74 psigt = 0.0;
75 hoverbmac = hoverbcg = 0.0;
76 Re = 0.0;
77 Nx = Ny = Nz = 0.0;
78
79 vPilotAccel.InitMatrix();
80 vPilotAccelN.InitMatrix();
81 vAeroUVW.InitMatrix();
82 vAeroPQR.InitMatrix();
83 vMachUVW.InitMatrix();
84 vEulerRates.InitMatrix();
85
86 bind();
87
88 Debug(0);
89}
static constexpr double RankineToCelsius(double rankine)
Converts from degrees Rankine to degrees Celsius.
Definition FGJSBBase.h:199
FGModel(FGFDMExec *)
Constructor.
Definition FGModel.cpp:57
+ Here is the call graph for this function:

◆ ~FGAuxiliary()

Destructor.

Definition at line 124 of file FGAuxiliary.cpp.

125{
126 Debug(1);
127}

Member Function Documentation

◆ Getadot() [1/2]

double Getadot ( int  unit) const
inline

Definition at line 215 of file FGAuxiliary.h.

215 { if (unit == inDegrees) return adot*radtodeg;
216 else return BadUnits(); }

◆ Getadot() [2/2]

double Getadot ( void  ) const
inline

Definition at line 207 of file FGAuxiliary.h.

207{ return adot; }

◆ GetAeroPQR() [1/2]

double GetAeroPQR ( int  axis) const
inline

Definition at line 191 of file FGAuxiliary.h.

191{ return vAeroPQR(axis); }

◆ GetAeroPQR() [2/2]

const FGColumnVector3 & GetAeroPQR ( void  ) const
inline

Definition at line 199 of file FGAuxiliary.h.

199{ return vAeroPQR; }

◆ GetAeroUVW() [1/2]

double GetAeroUVW ( int  idx) const
inline

Definition at line 204 of file FGAuxiliary.h.

204{ return vAeroUVW(idx); }

◆ GetAeroUVW() [2/2]

const FGColumnVector3 & GetAeroUVW ( void  ) const
inline

Definition at line 201 of file FGAuxiliary.h.

201{ return vAeroUVW; }

◆ Getalpha() [1/2]

double Getalpha ( int  unit) const
inline

Definition at line 211 of file FGAuxiliary.h.

211 { if (unit == inDegrees) return alpha*radtodeg;
212 else return BadUnits(); }

◆ Getalpha() [2/2]

double Getalpha ( void  ) const
inline

Definition at line 205 of file FGAuxiliary.h.

205{ return alpha; }

◆ Getbdot() [1/2]

double Getbdot ( int  unit) const
inline

Definition at line 217 of file FGAuxiliary.h.

217 { if (unit == inDegrees) return bdot*radtodeg;
218 else return BadUnits(); }

◆ Getbdot() [2/2]

double Getbdot ( void  ) const
inline

Definition at line 208 of file FGAuxiliary.h.

208{ return bdot; }

◆ Getbeta() [1/2]

double Getbeta ( int  unit) const
inline

Definition at line 213 of file FGAuxiliary.h.

213 { if (unit == inDegrees) return beta*radtodeg;
214 else return BadUnits(); }

◆ Getbeta() [2/2]

double Getbeta ( void  ) const
inline

Definition at line 206 of file FGAuxiliary.h.

206{ return beta; }

◆ GetDistanceRelativePosition()

double GetDistanceRelativePosition ( void  ) const

Definition at line 370 of file FGAuxiliary.cpp.

371{
372 auto ic = FDMExec->GetIC();
373 return in.vLocation.GetDistanceTo(ic->GetLongitudeRadIC(),
374 ic->GetGeodLatitudeRadIC())* fttom;
375}
std::shared_ptr< FGInitialCondition > GetIC(void) const
Returns a pointer to the FGInitialCondition object.
Definition FGFDMExec.h:389
double GetDistanceTo(double target_longitude, double target_latitude) const
Get the geodetic distance between the current location and a given location.

◆ GetEulerRates() [1/2]

double GetEulerRates ( int  axis) const
inline

Definition at line 192 of file FGAuxiliary.h.

192{ return vEulerRates(axis); }

◆ GetEulerRates() [2/2]

const FGColumnVector3 & GetEulerRates ( void  ) const
inline

Definition at line 200 of file FGAuxiliary.h.

200{ return vEulerRates; }

◆ GetGamma() [1/2]

double GetGamma ( int  unit) const
inline

Definition at line 270 of file FGAuxiliary.h.

270 {
271 if (unit == inDegrees) return gamma*radtodeg;
272 else return BadUnits();
273 }

◆ GetGamma() [2/2]

double GetGamma ( void  ) const
inline

Definition at line 267 of file FGAuxiliary.h.

267{ return gamma; }

◆ GetGroundTrack()

double GetGroundTrack ( void  ) const
inline

Definition at line 268 of file FGAuxiliary.h.

268{ return psigt; }

◆ GetHOverBCG()

double GetHOverBCG ( void  ) const
inline

Definition at line 264 of file FGAuxiliary.h.

264{ return hoverbcg; }

◆ GetHOverBMAC()

double GetHOverBMAC ( void  ) const
inline

Definition at line 265 of file FGAuxiliary.h.

265{ return hoverbmac; }

◆ GetLatitudeRelativePosition()

double GetLatitudeRelativePosition ( void  ) const

Definition at line 362 of file FGAuxiliary.cpp.

363{
364 return in.vLocation.GetDistanceTo(in.vLocation.GetLongitude(),
365 FDMExec->GetIC()->GetGeodLatitudeRadIC())* fttom;
366}
double GetLongitude() const
Get the longitude.
Definition FGLocation.h:234

◆ GetLocationVRP()

const FGLocation & GetLocationVRP ( void  ) const
inline

Definition at line 202 of file FGAuxiliary.h.

202{ return vLocationVRP; }

◆ GetLongitudeRelativePosition()

double GetLongitudeRelativePosition ( void  ) const

Definition at line 354 of file FGAuxiliary.cpp.

355{
356 return in.vLocation.GetDistanceTo(FDMExec->GetIC()->GetLongitudeRadIC(),
357 in.vLocation.GetGeodLatitudeRad())* fttom;
358}
double GetGeodLatitudeRad(void) const
Get the GEODETIC latitude in radians.
Definition FGLocation.h:258

◆ GetMach()

double GetMach ( void  ) const
inline

Gets the Mach number.

Definition at line 248 of file FGAuxiliary.h.

248{ return Mach; }

◆ GetMachU()

double GetMachU ( void  ) const
inline

The mach number calculated using the vehicle X axis velocity.

Definition at line 251 of file FGAuxiliary.h.

251{ return MachU; }

◆ GetMagBeta() [1/2]

double GetMagBeta ( int  unit) const
inline

Definition at line 219 of file FGAuxiliary.h.

219 { if (unit == inDegrees) return fabs(beta)*radtodeg;
220 else return BadUnits(); }

◆ GetMagBeta() [2/2]

double GetMagBeta ( void  ) const
inline

Definition at line 209 of file FGAuxiliary.h.

209{ return fabs(beta); }

◆ GetNcg() [1/2]

double GetNcg ( int  idx) const
inline

Definition at line 197 of file FGAuxiliary.h.

197{ return vNcg(idx); }

◆ GetNcg() [2/2]

const FGColumnVector3 & GetNcg ( void  ) const
inline

Definition at line 196 of file FGAuxiliary.h.

196{ return vNcg; }

◆ GetNlf()

double GetNlf ( void  ) const

Definition at line 344 of file FGAuxiliary.cpp.

345{
346 if (in.Mass != 0)
347 return (in.vFw(3))/(in.Mass*slugtolb);
348 else
349 return 0.;
350}
static constexpr double slugtolb
Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can a...
Definition FGJSBBase.h:313

◆ GetNpilot() [1/2]

double GetNpilot ( int  idx) const
inline

Definition at line 190 of file FGAuxiliary.h.

190{ return vPilotAccelN(idx); }

◆ GetNpilot() [2/2]

const FGColumnVector3 & GetNpilot ( void  ) const
inline

Definition at line 195 of file FGAuxiliary.h.

195{ return vPilotAccelN; }

◆ GetNwcg()

const FGColumnVector3 & GetNwcg ( void  ) const
inline

Definition at line 262 of file FGAuxiliary.h.

262{ return vNwcg; }

◆ GetNx()

double GetNx ( void  ) const
inline

The longitudinal acceleration in g's of the aircraft center of gravity.

Definition at line 254 of file FGAuxiliary.h.

254{ return Nx; }

◆ GetNy()

double GetNy ( void  ) const
inline

The lateral acceleration in g's of the aircraft center of gravity.

Definition at line 257 of file FGAuxiliary.h.

257{ return Ny; }

◆ GetNz()

double GetNz ( void  ) const
inline

The vertical acceleration in g's of the aircraft center of gravity.

Definition at line 260 of file FGAuxiliary.h.

260{ return Nz; }

◆ GetPilotAccel() [1/2]

double GetPilotAccel ( int  idx) const
inline

Definition at line 189 of file FGAuxiliary.h.

189{ return vPilotAccel(idx); }

◆ GetPilotAccel() [2/2]

const FGColumnVector3 & GetPilotAccel ( void  ) const
inline

Definition at line 194 of file FGAuxiliary.h.

194{ return vPilotAccel; }

◆ Getqbar()

double Getqbar ( void  ) const
inline

Definition at line 232 of file FGAuxiliary.h.

232{ return qbar; }

◆ GetqbarUV()

double GetqbarUV ( void  ) const
inline

Definition at line 234 of file FGAuxiliary.h.

234{ return qbarUV; }

◆ GetqbarUW()

double GetqbarUW ( void  ) const
inline

Definition at line 233 of file FGAuxiliary.h.

233{ return qbarUW; }

◆ GetReynoldsNumber()

double GetReynoldsNumber ( void  ) const
inline

Definition at line 235 of file FGAuxiliary.h.

235{ return Re; }

◆ GetTAT_C()

double GetTAT_C ( void  ) const
inline

Definition at line 187 of file FGAuxiliary.h.

187{ return tatc; }

◆ GetTb2w()

const FGMatrix33 & GetTb2w ( void  ) const
inline

Calculates and returns the body-to-wind axis transformation matrix.

Returns
a reference to the wind-to-body transformation matrix.

Definition at line 230 of file FGAuxiliary.h.

230{ return mTb2w; }

◆ GetTotalPressure()

double GetTotalPressure ( void  ) const
inline

Returns the total pressure.

Total pressure is freestream total pressure for subsonic only. For supersonic it is the 1D total pressure behind a normal shock.

Definition at line 176 of file FGAuxiliary.h.

176{ return pt; }

◆ GetTotalTemperature()

double GetTotalTemperature ( void  ) const
inline

Returns the total temperature.

The total temperature ("tat", isentropic flow) is calculated:

tat = in.Temperature*(1 + 0.2*Mach*Mach)

(where "in.Temperature" is standard temperature calculated by the atmosphere model)

Definition at line 186 of file FGAuxiliary.h.

186{ return tat; }

◆ GetTw2b()

const FGMatrix33 & GetTw2b ( void  ) const
inline

Calculates and returns the wind-to-body axis transformation matrix.

Returns
a reference to the wind-to-body transformation matrix.

Definition at line 225 of file FGAuxiliary.h.

225{ return mTw2b; }

◆ GetVcalibratedFPS()

double GetVcalibratedFPS ( void  ) const
inline

Returns Calibrated airspeed in feet/second.

Definition at line 160 of file FGAuxiliary.h.

160{ return vcas; }

◆ GetVcalibratedKTS()

double GetVcalibratedKTS ( void  ) const
inline

Returns Calibrated airspeed in knots.

Definition at line 162 of file FGAuxiliary.h.

162{ return vcas*fpstokts; }

◆ GetVequivalentFPS()

double GetVequivalentFPS ( void  ) const
inline

Returns equivalent airspeed in feet/second.

Definition at line 164 of file FGAuxiliary.h.

164{ return veas; }

◆ GetVequivalentKTS()

double GetVequivalentKTS ( void  ) const
inline

Returns equivalent airspeed in knots.

Definition at line 166 of file FGAuxiliary.h.

166{ return veas*fpstokts; }

◆ GetVground()

double GetVground ( void  ) const
inline

Gets the ground speed in feet per second.

The magnitude is the square root of the sum of the squares (RSS) of the vehicle north and east velocity components.

Returns
The magnitude of the vehicle velocity in the horizontal plane.

Definition at line 245 of file FGAuxiliary.h.

245{ return Vground; }

◆ GetVt()

double GetVt ( void  ) const
inline

Gets the magnitude of total vehicle velocity including wind effects in feet per second.

Definition at line 239 of file FGAuxiliary.h.

239{ return Vt; }

◆ GetVtrueFPS()

double GetVtrueFPS ( ) const
inline

Returns the true airspeed in feet per second.

Definition at line 168 of file FGAuxiliary.h.

168{ return Vt; }

◆ GetVtrueKTS()

double GetVtrueKTS ( ) const
inline

Returns the true airspeed in knots.

Definition at line 170 of file FGAuxiliary.h.

170{ return Vt * fpstokts; }

◆ InitModel()

bool InitModel ( void  )
overridevirtual

Reimplemented from FGModelFunctions.

Definition at line 93 of file FGAuxiliary.cpp.

94{
95 if (!FGModel::InitModel()) return false;
96
97 pt = in.Pressure;
98 tat = in.Temperature;
99 tatc = RankineToCelsius(tat);
100
101 vcas = veas = 0.0;
102 qbar = qbarUW = qbarUV = 0.0;
103 Mach = MachU = 0.0;
104 alpha = beta = 0.0;
105 adot = bdot = 0.0;
106 gamma = Vt = Vground = 0.0;
107 psigt = 0.0;
108 hoverbmac = hoverbcg = 0.0;
109 Re = 0.0;
110 Nz = Ny = 0.0;
111
112 vPilotAccel.InitMatrix();
113 vPilotAccelN.InitMatrix();
114 vAeroUVW.InitMatrix();
115 vAeroPQR.InitMatrix();
116 vMachUVW.InitMatrix();
117 vEulerRates.InitMatrix();
118
119 return true;
120}

◆ MachFromImpactPressure()

double MachFromImpactPressure ( double  qc,
double  p 
) const

Compute the Mach number from the differential pressure (qc) and the static pressure.

Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).

Parameters
qcThe differential/impact pressure
pressurePressure in psf
Returns
The Mach number

Definition at line 267 of file FGAuxiliary.cpp.

268{
269 constexpr double SHRatio = FGAtmosphere::SHRatio;
270 constexpr double a = 2.0/(SHRatio-1.0);
271 constexpr double b = (SHRatio-1.0)/SHRatio;
272 constexpr double c = 2.0/b;
273 constexpr double d = 0.5*a;
274 const double coeff = pow(0.5*(SHRatio+1.0), -0.25*c)
275 * pow(0.5*(SHRatio+1.0)/SHRatio, -0.5*d);
276
277 double A = qc / pressure + 1;
278 double M = sqrt(a*(pow(A, b) - 1.0)); // Equation (4.12)
279
280 if (M > 1.0)
281 for (unsigned int i = 0; i<10; i++)
282 M = coeff*sqrt(A*pow(1 - 1.0 / (c*M*M), d)); // Equation (4.17)
283
284 return M;
285}
+ Here is the caller graph for this function:

◆ MachFromVcalibrated()

double MachFromVcalibrated ( double  vcas,
double  pressure 
) const

Calculate the Mach number from the calibrated airspeed.Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).

Parameters
vcasThe calibrated airspeed (CAS) in ft/s
pressurePressure in psf
Returns
The Mach number

Definition at line 297 of file FGAuxiliary.cpp.

298{
299 constexpr double StdDaySLpressure = FGAtmosphere::StdDaySLpressure;
300 double qc = PitotTotalPressure(vcas / in.StdDaySLsoundspeed, StdDaySLpressure) - StdDaySLpressure;
301 return MachFromImpactPressure(qc, pressure);
302}
double PitotTotalPressure(double mach, double pressure) const
Compute the total pressure in front of the Pitot tube.
double MachFromImpactPressure(double qc, double p) const
Compute the Mach number from the differential pressure (qc) and the static pressure.
+ Here is the call graph for this function:

◆ PitotTotalPressure()

double PitotTotalPressure ( double  mach,
double  pressure 
) const

Compute the total pressure in front of the Pitot tube.

It uses the Rayleigh formula for supersonic speeds (See "Introduction to Aerodynamics of a Compressible Fluid - H.W. Liepmann, A.E. Puckett - Wiley & sons (1947)" §5.4 pp 75-80)

Parameters
machThe Mach number
pressurePressure in psf
Returns
The total pressure in front of the Pitot tube in psf

Definition at line 230 of file FGAuxiliary.cpp.

231{
232 constexpr double SHRatio = FGAtmosphere::SHRatio;
233 constexpr double a = (SHRatio-1.0) / 2.0;
234 constexpr double b = SHRatio / (SHRatio-1.0);
235 constexpr double c = 2.0*b;
236 constexpr double d = 1.0 / (SHRatio-1.0);
237 const double coeff = pow(0.5*(SHRatio+1.0), b)
238 * pow((SHRatio+1.0)/(SHRatio-1.0), d);
239
240 if (mach < 0) return pressure;
241 if (mach < 1) //calculate total pressure assuming isentropic flow
242 return pressure*pow((1.0 + a*mach*mach), b);
243 else {
244 // Shock in front of pitot tube, we'll assume its normal and use the
245 // Rayleigh Pitot Tube Formula, i.e. the ratio of total pressure behind the
246 // shock to the static pressure in front of the normal shock assumption
247 // should not be a bad one -- most supersonic aircraft place the pitot probe
248 // out front so that it is the forward most point on the aircraft.
249 // The real shock would, of course, take on something like the shape of a
250 // rounded-off cone but, here again, the assumption should be good since the
251 // opening of the pitot probe is very small and, therefore, the effects of
252 // the shock curvature should be small as well. AFAIK, this approach is
253 // fairly well accepted within the aerospace community
254
255 // The denominator below is zero for Mach ~ 0.38, for which
256 // we'll never be here, so we're safe
257
258 return pressure*coeff*pow(mach, c)/pow(c*mach*mach-1.0, d);
259 }
260}
+ Here is the caller graph for this function:

◆ Run()

bool Run ( bool  Holding)
overridevirtual

Runs the Auxiliary routines; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.

Parameters
Holdingif true, the executive has been directed to hold the sim from advancing time. Some models may ignore this flag, such as the Input model, which may need to be active to listen on a socket for the "Resume" command to be given.
Returns
false if no error

Reimplemented from FGModel.

Definition at line 131 of file FGAuxiliary.cpp.

132{
133 if (FGModel::Run(Holding)) return true; // return true if error returned from base class
134 if (Holding) return false;
135
136 // Rotation
137
138 vEulerRates(eTht) = in.vPQR(eQ)*in.CosPhi - in.vPQR(eR)*in.SinPhi;
139 if (in.CosTht != 0.0) {
140 vEulerRates(ePsi) = (in.vPQR(eQ)*in.SinPhi + in.vPQR(eR)*in.CosPhi)/in.CosTht;
141 vEulerRates(ePhi) = in.vPQR(eP) + vEulerRates(ePsi)*in.SinTht;
142 }
143
144 // Combine the wind speed with aircraft speed to obtain wind relative speed
145 vAeroPQR = in.vPQR - in.TurbPQR;
146 vAeroUVW = in.vUVW - in.Tl2b * in.TotalWindNED;
147
148 alpha = beta = adot = bdot = 0;
149 double AeroU2 = vAeroUVW(eU)*vAeroUVW(eU);
150 double AeroV2 = vAeroUVW(eV)*vAeroUVW(eV);
151 double AeroW2 = vAeroUVW(eW)*vAeroUVW(eW);
152 double mUW = AeroU2 + AeroW2;
153
154 double Vt2 = mUW + AeroV2;
155 Vt = sqrt(Vt2);
156
157 if ( Vt > 0.001 ) {
158 beta = atan2(vAeroUVW(eV), sqrt(mUW));
159
160 if ( mUW >= 1E-6 ) {
161 alpha = atan2(vAeroUVW(eW), vAeroUVW(eU));
162 double Vtdot = (vAeroUVW(eU)*in.vUVWdot(eU) + vAeroUVW(eV)*in.vUVWdot(eV) + vAeroUVW(eW)*in.vUVWdot(eW))/Vt;
163 adot = (vAeroUVW(eU)*in.vUVWdot(eW) - vAeroUVW(eW)*in.vUVWdot(eU))/mUW;
164 bdot = (in.vUVWdot(eV)*Vt - vAeroUVW(eV)*Vtdot)/(Vt*sqrt(mUW));
165 }
166 }
167
168 UpdateWindMatrices();
169
170 Re = Vt * in.Wingchord / in.KinematicViscosity;
171
172 double densityD2 = 0.5*in.Density;
173
174 qbar = densityD2 * Vt2;
175 qbarUW = densityD2 * (mUW);
176 qbarUV = densityD2 * (AeroU2 + AeroV2);
177 Mach = Vt / in.SoundSpeed;
178 MachU = vMachUVW(eU) = vAeroUVW(eU) / in.SoundSpeed;
179 vMachUVW(eV) = vAeroUVW(eV) / in.SoundSpeed;
180 vMachUVW(eW) = vAeroUVW(eW) / in.SoundSpeed;
181
182 // Position
183
184 Vground = sqrt( in.vVel(eNorth)*in.vVel(eNorth) + in.vVel(eEast)*in.vVel(eEast) );
185
186 psigt = atan2(in.vVel(eEast), in.vVel(eNorth));
187 if (psigt < 0.0) psigt += 2*M_PI;
188 gamma = atan2(-in.vVel(eDown), Vground);
189
190 tat = in.Temperature*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow
191 tatc = RankineToCelsius(tat);
192
193 pt = PitotTotalPressure(Mach, in.Pressure);
194
195 if (abs(Mach) > 0.0) {
196 vcas = VcalibratedFromMach(Mach, in.Pressure);
197 veas = sqrt(2 * qbar / FGAtmosphere::StdDaySLdensity);
198 }
199 else
200 vcas = veas = 0.0;
201
202 vPilotAccel.InitMatrix();
203 vNcg = in.vBodyAccel/in.StandardGravity;
204 // Nz is Acceleration in "g's", along normal axis (-Z body axis)
205 Nz = -vNcg(eZ);
206 Ny = vNcg(eY);
207 Nx = vNcg(eX);
208 vPilotAccel = in.vBodyAccel + in.vPQRidot * in.ToEyePt;
209 vPilotAccel += in.vPQRi * (in.vPQRi * in.ToEyePt);
210
211 vNwcg = mTb2w * vNcg;
212 vNwcg(eZ) = 1.0 - vNwcg(eZ);
213
214 vPilotAccelN = vPilotAccel / in.StandardGravity;
215
216 // VRP computation
217 vLocationVRP = in.vLocation.LocalToLocation( in.Tb2l * in.VRPBody );
218
219 // Recompute some derived values now that we know the dependent parameters values ...
220 hoverbcg = in.DistanceAGL / in.Wingspan;
221
222 FGColumnVector3 vMac = in.Tb2l * in.RPBody;
223 hoverbmac = (in.DistanceAGL - vMac(3)) / in.Wingspan;
224
225 return false;
226}
double VcalibratedFromMach(double mach, double pressure) const
Calculate the calibrated airspeed from the Mach number.
FGLocation LocalToLocation(const FGColumnVector3 &lvec) const
Conversion from Local frame coordinates to a location in the earth centered and fixed frame.
Definition FGLocation.h:326
virtual bool Run(bool Holding)
Runs the model; called by the Executive.
Definition FGModel.cpp:89
+ Here is the call graph for this function:

◆ SetAeroPQR()

void SetAeroPQR ( const FGColumnVector3 tt)
inline

Definition at line 279 of file FGAuxiliary.h.

279{ vAeroPQR = tt; }

◆ VcalibratedFromMach()

double VcalibratedFromMach ( double  mach,
double  pressure 
) const

Calculate the calibrated airspeed from the Mach number.

Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).

Parameters
machThe Mach number
pressurePressure in psf
Returns
The calibrated airspeed (CAS) in ft/s

Definition at line 289 of file FGAuxiliary.cpp.

290{
291 double qc = PitotTotalPressure(mach, pressure) - pressure;
292 return in.StdDaySLsoundspeed * MachFromImpactPressure(qc, FGAtmosphere::StdDaySLpressure);
293}
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

The documentation for this class was generated from the following files: