JSBSim Flight Dynamics Model 1.2.2 (22 Mar 2025)
An Open Source Flight Dynamics and Control Software Library in C++
Loading...
Searching...
No Matches
FGPropagate Class Reference

Detailed Description

Models the EOM and integration/propagation of state.

The Equations of Motion (EOM) for JSBSim are integrated to propagate the state of the vehicle given the forces and moments that act on it. The integration accounts for a rotating Earth.

Integration of rotational and translation position and rate can be customized as needed or frozen by the selection of no integrator. The selection of which integrator to use is done through the setting of the associated property. There are four properties which can be set:

simulation/integrator/rate/rotational
simulation/integrator/rate/translational
simulation/integrator/position/rotational
simulation/integrator/position/translational

Each of the integrators listed above can be set to one of the following values:

0: No integrator (Freeze)
1: Rectangular Euler
2: Trapezoidal
3: Adams Bashforth 2
4: Adams Bashforth 3
5: Adams Bashforth 4
Author
Jon S. Berndt, Mathias Froehlich, Bertrand Coconnier

Definition at line 95 of file FGPropagate.h.

#include <FGPropagate.h>

+ Inheritance diagram for FGPropagate:
+ Collaboration diagram for FGPropagate:

Classes

struct  Inputs
 
struct  VehicleState
 The current vehicle state vector structure contains the translational and angular position, and the translational and angular velocity. More...
 

Public Types

enum  eIntegrateType {
  eNone = 0 , eRectEuler , eTrapezoidal , eAdamsBashforth2 ,
  eAdamsBashforth3 , eAdamsBashforth4 , eBuss1 , eBuss2 ,
  eLocalLinearization , eAdamsBashforth5
}
 These define the indices use to select the various integrators. More...
 
- Public Types inherited from FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 

Public Member Functions

 FGPropagate (FGFDMExec *Executive)
 Constructor.
 
 ~FGPropagate ()
 Destructor.
 
void DumpState (void)
 
double GetAltitudeASL (void) const
 Returns the current altitude above sea level.
 
double GetAltitudeASLmeters (void) const
 Returns the current altitude above sea level.
 
double GetCosEuler (int idx) const
 Retrieves the cosine of a vehicle Euler angle component.
 
double GetDistanceAGL (void) const
 
double GetDistanceAGLKm (void) const
 
double GetEarthPositionAngle (void) const
 Returns the Earth position angle.
 
double GetEarthPositionAngleDeg (void) const
 Returns the Earth position angle in degrees.
 
double GetECEFVelocity (int idx) const
 Calculates and retrieves the velocity vector relative to the earth centered earth fixed (ECEF) frame for a particular axis.
 
FGColumnVector3 GetECEFVelocity (void) const
 Calculates and retrieves the velocity vector relative to the earth centered earth fixed (ECEF) frame.
 
double GetEuler (int axis) const
 Retrieves a vehicle Euler angle component.
 
const FGColumnVector3GetEuler (void) const
 Retrieves the Euler angles that define the vehicle orientation.
 
double GetEulerDeg (int axis) const
 Retrieves a vehicle Euler angle component in degrees.
 
FGColumnVector3 GetEulerDeg (void) const
 Retrieves the Euler angles (in degrees) that define the vehicle orientation.
 
double GetGeodeticAltitude (void) const
 
double GetGeodeticAltitudeKm (void) const
 
double GetGeodLatitudeDeg (void) const
 
double GetGeodLatitudeRad (void) const
 
double Gethdot (void) const
 Returns the current altitude rate.
 
double GetInertialPosition (int i) const
 
const FGColumnVector3GetInertialPosition (void) const
 Retrieves the inertial position vector.
 
double GetInertialVelocity (int i) const
 
const FGColumnVector3GetInertialVelocity (void) const
 Retrieves the inertial velocity vector in ft/sec.
 
double GetInertialVelocityMagnitude (void) const
 Retrieves the total inertial velocity in ft/sec.
 
double GetLatitude (void) const
 
double GetLatitudeDeg (void) const
 
double GetLocalTerrainRadius (void) const
 Returns the "constant" LocalTerrainRadius.
 
double GetLocation (int i) const
 
const FGLocationGetLocation (void) const
 
double GetLongitude (void) const
 
double GetLongitudeDeg (void) const
 
double GetNEDVelocityMagnitude (void) const
 Retrieves the total local NED velocity in ft/sec.
 
double GetPQR (int axis) const
 Retrieves a body frame angular velocity component relative to the ECEF frame.
 
const FGColumnVector3GetPQR (void) const
 Retrieves the body angular rates vector, relative to the ECEF frame.
 
double GetPQRi (int axis) const
 Retrieves a body frame angular velocity component relative to the ECI (inertial) frame.
 
const FGColumnVector3GetPQRi (void) const
 Retrieves the body angular rates vector, relative to the ECI (inertial) frame.
 
const FGQuaternion GetQuaternion (void) const
 Returns the quaternion that goes from Local to Body.
 
const FGQuaternionGetQuaterniondot (void) const
 Retrieves the time derivative of the body orientation quaternion.
 
const FGQuaternion GetQuaternionECEF (void) const
 Returns the quaternion that goes from ECEF to Body.
 
const FGQuaternion GetQuaternionECI (void) const
 Returns the quaternion that goes from ECI to Body.
 
double GetRadius (void) const
 
double GetSinEuler (int idx) const
 Retrieves the sine of a vehicle Euler angle component.
 
const FGMatrix33GetTb2ec (void) const
 Retrieves the body-to-ECEF transformation matrix.
 
const FGMatrix33GetTb2i (void) const
 Retrieves the body-to-ECI transformation matrix.
 
const FGMatrix33GetTb2l (void) const
 Retrieves the body-to-local transformation matrix.
 
const FGMatrix33GetTec2b (void) const
 Retrieves the ECEF-to-body transformation matrix.
 
const FGMatrix33GetTec2i (void) const
 Retrieves the ECEF-to-ECI transformation matrix.
 
const FGMatrix33GetTec2l (void) const
 Retrieves the ECEF-to-local transformation matrix.
 
const FGColumnVector3GetTerrainAngularVelocity (void) const
 
double GetTerrainElevation (void) const
 
const FGColumnVector3GetTerrainVelocity (void) const
 
const FGMatrix33GetTi2b (void) const
 Retrieves the ECI-to-body transformation matrix.
 
const FGMatrix33GetTi2ec (void) const
 Retrieves the ECI-to-ECEF transformation matrix.
 
const FGMatrix33GetTi2l (void) const
 Retrieves the inertial-to-local transformation matrix.
 
const FGMatrix33GetTl2b (void) const
 Retrieves the local-to-body transformation matrix.
 
const FGMatrix33GetTl2ec (void) const
 Retrieves the local-to-ECEF transformation matrix.
 
const FGMatrix33GetTl2i (void) const
 Retrieves the local-to-inertial transformation matrix.
 
double GetUVW (int idx) const
 Retrieves a body frame velocity component.
 
const FGColumnVector3GetUVW (void) const
 Retrieves the body frame vehicle velocity vector.
 
double GetVel (int idx) const
 Retrieves a Local frame velocity component.
 
const FGColumnVector3GetVel (void) const
 Retrieves the velocity vector.
 
const VehicleStateGetVState (void) const
 
void InitializeDerivatives ()
 
bool InitModel (void)
 Initializes the FGPropagate class after instantiation and prior to first execution.
 
void NudgeBodyLocation (const FGColumnVector3 &deltaLoc)
 
void RecomputeLocalTerrainVelocity ()
 
bool Run (bool Holding)
 Runs the state propagation model; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.
 
void SetAltitudeASL (double altASL)
 
void SetAltitudeASLmeters (double altASL)
 
void SetDistanceAGL (double tt)
 
void SetDistanceAGLKm (double tt)
 
void SetEarthPositionAngle (double EPA)
 Sets the Earth position angle.
 
void SetHoldDown (bool hd)
 Sets the property forces/hold-down.
 
void SetInertialOrientation (const FGQuaternion &Qi)
 
void SetInertialRates (const FGColumnVector3 &vRates)
 
void SetInertialVelocity (const FGColumnVector3 &Vi)
 
void SetInitialState (const FGInitialCondition *)
 
void SetLatitude (double lat)
 
void SetLatitudeDeg (double lat)
 
void SetLocation (const FGColumnVector3 &lv)
 
void SetLocation (const FGLocation &l)
 
void SetLongitude (double lon)
 
void SetLongitudeDeg (double lon)
 
void SetPosition (const double Lon, const double Lat, const double Radius)
 
void SetPQR (unsigned int i, double val)
 
void SetRadius (double r)
 
void SetTerrainElevation (double tt)
 
void SetUVW (unsigned int i, double val)
 
void SetVState (const VehicleState &vstate)
 
- Public Member Functions inherited from FGModel
 FGModel (FGFDMExec *)
 Constructor.
 
 ~FGModel () override
 Destructor.
 
virtual SGPath FindFullPathName (const SGPath &path) const
 
FGFDMExecGetExec (void)
 
const std::string & GetName (void)
 
unsigned int GetRate (void)
 Get the output rate for the model in frames.
 
virtual bool Load (Element *el)
 
void SetPropertyManager (std::shared_ptr< FGPropertyManager > fgpm)
 
void SetRate (unsigned int tt)
 Set the ouput rate for the model in frames.
 
- Public Member Functions inherited from FGModelFunctions
std::string GetFunctionStrings (const std::string &delimeter) const
 Gets the strings for the current set of functions.
 
std::string GetFunctionValues (const std::string &delimeter) const
 Gets the function values.
 
std::shared_ptr< FGFunctionGetPreFunction (const std::string &name)
 Get one of the "pre" function.
 
bool Load (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void PostLoad (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void PreLoad (Element *el, FGFDMExec *fdmex, std::string prefix="")
 
void RunPostFunctions (void)
 
void RunPreFunctions (void)
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Public Attributes

struct JSBSim::FGPropagate::Inputs in
 

Additional Inherited Members

- Static Public Member Functions inherited from FGJSBBase
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
- Static Public Attributes inherited from FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Protected Member Functions inherited from FGModel
bool Upload (Element *el, bool preLoad)
 Uploads this model in memory.
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from FGModel
unsigned int exe_ctr
 
FGFDMExecFDMExec
 
std::string Name
 
std::shared_ptr< FGPropertyManagerPropertyManager
 
unsigned int rate
 
- Protected Attributes inherited from FGModelFunctions
FGPropertyReader LocalProperties
 
std::vector< std::shared_ptr< FGFunction > > PostFunctions
 
std::vector< std::shared_ptr< FGFunction > > PreFunctions
 
- Static Protected Attributes inherited from FGJSBBase
static constexpr double radtodeg = 180. / M_PI
 
static constexpr double degtorad = M_PI / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double fttom = 0.3048
 
static constexpr double ktstofps = 1852./(3600*fttom)
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 

Member Enumeration Documentation

◆ eIntegrateType

These define the indices use to select the various integrators.

Definition at line 155 of file FGPropagate.h.

155 {eNone = 0, eRectEuler, eTrapezoidal, eAdamsBashforth2,
156 eAdamsBashforth3, eAdamsBashforth4, eBuss1, eBuss2, eLocalLinearization, eAdamsBashforth5};

Constructor & Destructor Documentation

◆ FGPropagate()

FGPropagate ( FGFDMExec Executive)
explicit

Constructor.

The constructor initializes several variables, and sets the initial set of integrators to use as follows:

  • integrator, rotational rate = Adams Bashforth 2
  • integrator, translational rate = Adams Bashforth 2
  • integrator, rotational position = Trapezoidal
  • integrator, translational position = Trapezoidal
    Parameters
    Executivea pointer to the parent executive object

These define the indices use to select the various integrators.

Definition at line 82 of file FGPropagate.cpp.

83 : FGModel(fdmex)
84{
85 Debug(0);
86 Name = "FGPropagate";
87
88 Inertial = FDMExec->GetInertial();
89
91 // eNone = 0, eRectEuler, eTrapezoidal, eAdamsBashforth2, eAdamsBashforth3, eAdamsBashforth4};
92
93 integrator_rotational_rate = eRectEuler;
94 integrator_translational_rate = eAdamsBashforth2;
95 integrator_rotational_position = eRectEuler;
96 integrator_translational_position = eAdamsBashforth3;
97
98 VState.dqPQRidot.resize(5, FGColumnVector3(0.0,0.0,0.0));
99 VState.dqUVWidot.resize(5, FGColumnVector3(0.0,0.0,0.0));
100 VState.dqInertialVelocity.resize(5, FGColumnVector3(0.0,0.0,0.0));
101 VState.dqQtrndot.resize(5, FGQuaternion(0.0,0.0,0.0));
102
103 epa = 0.0;
104
105 bind();
106 Debug(0);
107}
std::shared_ptr< FGInertial > GetInertial(void) const
Returns the FGInertial pointer.
FGModel(FGFDMExec *)
Constructor.
Definition FGModel.cpp:57
+ Here is the call graph for this function:

◆ ~FGPropagate()

~FGPropagate ( void  )

Destructor.

Definition at line 111 of file FGPropagate.cpp.

112{
113 Debug(1);
114}

Member Function Documentation

◆ DumpState()

void DumpState ( void  )

Definition at line 703 of file FGPropagate.cpp.

704{
705 cout << endl;
706 cout << fgblue
707 << "------------------------------------------------------------------" << reset << endl;
708 cout << highint
709 << "State Report at sim time: " << FDMExec->GetSimTime() << " seconds" << reset << endl;
710 cout << " " << underon
711 << "Position" << underoff << endl;
712 cout << " ECI: " << VState.vInertialPosition.Dump(", ") << " (x,y,z, in ft)" << endl;
713 cout << " ECEF: " << VState.vLocation << " (x,y,z, in ft)" << endl;
714 cout << " Local: " << VState.vLocation.GetGeodLatitudeDeg()
715 << ", " << VState.vLocation.GetLongitudeDeg()
716 << ", " << GetAltitudeASL() << " (geodetic lat, lon, alt ASL in deg and ft)" << endl;
717
718 cout << endl << " " << underon
719 << "Orientation" << underoff << endl;
720 cout << " ECI: " << VState.qAttitudeECI.GetEulerDeg().Dump(", ") << " (phi, theta, psi in deg)" << endl;
721 cout << " Local: " << VState.qAttitudeLocal.GetEulerDeg().Dump(", ") << " (phi, theta, psi in deg)" << endl;
722
723 cout << endl << " " << underon
724 << "Velocity" << underoff << endl;
725 cout << " ECI: " << VState.vInertialVelocity.Dump(", ") << " (x,y,z in ft/s)" << endl;
726 cout << " ECEF: " << (Tb2ec * VState.vUVW).Dump(", ") << " (x,y,z in ft/s)" << endl;
727 cout << " Local: " << GetVel() << " (n,e,d in ft/sec)" << endl;
728 cout << " Body: " << GetUVW() << " (u,v,w in ft/sec)" << endl;
729
730 cout << endl << " " << underon
731 << "Body Rates (relative to given frame, expressed in body frame)" << underoff << endl;
732 cout << " ECI: " << (VState.vPQRi*radtodeg).Dump(", ") << " (p,q,r in deg/s)" << endl;
733 cout << " ECEF: " << (VState.vPQR*radtodeg).Dump(", ") << " (p,q,r in deg/s)" << endl;
734}
std::string Dump(const std::string &delimeter) const
Prints the contents of the vector.
double GetSimTime(void) const
Returns the cumulative simulation time in seconds.
Definition FGFDMExec.h:549
static char fgblue[6]
blue text
Definition FGJSBBase.h:162
static char underon[5]
underlines text
Definition FGJSBBase.h:158
static char reset[5]
resets text properties
Definition FGJSBBase.h:156
static char underoff[6]
underline off
Definition FGJSBBase.h:160
static char highint[5]
highlights text
Definition FGJSBBase.h:150
double GetGeodLatitudeDeg(void) const
Get the GEODETIC latitude in degrees.
Definition FGLocation.h:273
double GetLongitudeDeg() const
Get the longitude.
Definition FGLocation.h:240
double GetAltitudeASL(void) const
Returns the current altitude above sea level.
const FGColumnVector3 & GetUVW(void) const
Retrieves the body frame vehicle velocity vector.
const FGColumnVector3 & GetVel(void) const
Retrieves the velocity vector.
double GetEulerDeg(int i) const
Retrieves the Euler angles.
FGColumnVector3 vUVW
The velocity vector of the vehicle with respect to the ECEF frame, expressed in the body system.
FGQuaternion qAttitudeECI
The current orientation of the vehicle, that is, the orientation of the body frame relative to the in...
FGColumnVector3 vPQRi
The angular velocity vector for the vehicle body frame relative to the ECI frame, expressed in the bo...
FGColumnVector3 vPQR
The angular velocity vector for the vehicle relative to the ECEF frame, expressed in the body frame.
FGLocation vLocation
Represents the current location of the vehicle in Earth centered Earth fixed (ECEF) frame.
FGQuaternion qAttitudeLocal
The current orientation of the vehicle, that is, the orientation of the body frame relative to the lo...

◆ GetAltitudeASL()

double GetAltitudeASL ( void  ) const

Returns the current altitude above sea level.

This function returns the altitude above sea level. units ft

Returns
The current altitude above sea level in feet.

Definition at line 576 of file FGPropagate.cpp.

577{
578 return VState.vLocation.GetRadius() - VState.vLocation.GetSeaLevelRadius();
579}
double GetRadius() const
Get the distance from the center of the earth in feet.
Definition FGLocation.h:291
double GetSeaLevelRadius(void) const
Get the sea level radius in feet below the current location.
+ Here is the call graph for this function:

◆ GetAltitudeASLmeters()

double GetAltitudeASLmeters ( void  ) const
inline

Returns the current altitude above sea level.

This function returns the altitude above sea level. units meters

Returns
The current altitude above sea level in meters.

Definition at line 337 of file FGPropagate.h.

337{ return GetAltitudeASL()*fttom;}

◆ GetCosEuler()

double GetCosEuler ( int  idx) const
inline

Retrieves the cosine of a vehicle Euler angle component.

Retrieves the cosine of an Euler angle (Phi, Theta, or Psi) from the quaternion that stores the vehicle orientation relative to the Local frame. The order of rotations used is Yaw-Pitch-Roll. The Euler angle with subscript (1) is Phi. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the Euler angle referred to in this call are, ePhi=1, eTht=2, ePsi=3 (e.g. GetCosEuler(eTht) returns cos(theta)). units none

Returns
The cosine of an Euler angle.

Definition at line 399 of file FGPropagate.h.

399{ return VState.qAttitudeLocal.GetCosEuler(idx); }
double GetCosEuler(int i) const
Retrieves cosine of the given euler angle.

◆ GetDistanceAGL()

double GetDistanceAGL ( void  ) const

Definition at line 630 of file FGPropagate.cpp.

631{
632 return Inertial->GetAltitudeAGL(VState.vLocation);
633}

◆ GetDistanceAGLKm()

double GetDistanceAGLKm ( void  ) const

Definition at line 637 of file FGPropagate.cpp.

638{
639 return GetDistanceAGL()*0.0003048;
640}

◆ GetEarthPositionAngle()

double GetEarthPositionAngle ( void  ) const
inline

Returns the Earth position angle.

Returns
Earth position angle in radians.

Definition at line 431 of file FGPropagate.h.

431{ return epa; }

◆ GetEarthPositionAngleDeg()

double GetEarthPositionAngleDeg ( void  ) const
inline

Returns the Earth position angle in degrees.

Returns
Earth position angle in degrees.

Definition at line 436 of file FGPropagate.h.

436{ return epa*radtodeg;}

◆ GetECEFVelocity() [1/2]

double GetECEFVelocity ( int  idx) const
inline

Calculates and retrieves the velocity vector relative to the earth centered earth fixed (ECEF) frame for a particular axis.

Definition at line 323 of file FGPropagate.h.

323{return (Tb2ec * VState.vUVW)(idx); }

◆ GetECEFVelocity() [2/2]

FGColumnVector3 GetECEFVelocity ( void  ) const
inline

Calculates and retrieves the velocity vector relative to the earth centered earth fixed (ECEF) frame.

Definition at line 318 of file FGPropagate.h.

318{return Tb2ec * VState.vUVW; }

◆ GetEuler() [1/2]

double GetEuler ( int  axis) const
inline

Retrieves a vehicle Euler angle component.

Retrieves an Euler angle (Phi, Theta, or Psi) from the quaternion that stores the vehicle orientation relative to the Local frame. The order of rotations used is Yaw-Pitch-Roll. The Euler angle with subscript (1) is Phi. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the Euler angle returned by this call are, ePhi=1, eTht=2, ePsi=3 (e.g. GetEuler(eTht) returns Theta). units radians

Returns
An Euler angle.

Definition at line 375 of file FGPropagate.h.

375{ return VState.qAttitudeLocal.GetEuler(axis); }
const FGColumnVector3 & GetEuler(void) const
Retrieves the Euler angles.

◆ GetEuler() [2/2]

const FGColumnVector3 & GetEuler ( void  ) const
inline

Retrieves the Euler angles that define the vehicle orientation.

Extracts the Euler angles from the quaternion that stores the orientation in the Local frame. The order of rotation used is Yaw-Pitch-Roll. The vector returned is represented by an FGColumnVector reference. The vector for the Euler angles is organized (Phi, Theta, Psi). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, the returned vector item with subscript (1) is Phi. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, ePhi=1, eTht=2, ePsi=3. units radians

Returns
The Euler angle vector, where the first item in the vector is the angle about the X axis, the second is the angle about the Y axis, and the third item is the angle about the Z axis (Phi, Theta, Psi).

Definition at line 253 of file FGPropagate.h.

253{ return VState.qAttitudeLocal.GetEuler(); }

◆ GetEulerDeg() [1/2]

double GetEulerDeg ( int  axis) const
inline

Retrieves a vehicle Euler angle component in degrees.

Retrieves an Euler angle (Phi, Theta, or Psi) from the quaternion that stores the vehicle orientation relative to the Local frame. The order of rotations used is Yaw-Pitch-Roll. The Euler angle with subscript (1) is Phi. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the Euler angle returned by this call are, ePhi=1, eTht=2, ePsi=3 (e.g. GetEuler(eTht) returns Theta). units degrees

Returns
An Euler angle in degrees.

Definition at line 387 of file FGPropagate.h.

387{ return VState.qAttitudeLocal.GetEuler(axis) * radtodeg; }

◆ GetEulerDeg() [2/2]

FGColumnVector3 GetEulerDeg ( void  ) const

Retrieves the Euler angles (in degrees) that define the vehicle orientation.

Extracts the Euler angles from the quaternion that stores the orientation in the Local frame. The order of rotation used is Yaw-Pitch-Roll. The vector returned is represented by an FGColumnVector reference. The vector for the Euler angles is organized (Phi, Theta, Psi). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, the returned vector item with subscript (1) is Phi. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, ePhi=1, eTht=2, ePsi=3. units degrees

Returns
The Euler angle vector, where the first item in the vector is the angle about the X axis, the second is the angle about the Y axis, and the third item is the angle about the Z axis (Phi, Theta, Psi).

Definition at line 696 of file FGPropagate.cpp.

697{
698 return VState.qAttitudeLocal.GetEuler() * radtodeg;
699}
+ Here is the call graph for this function:

◆ GetGeodeticAltitude()

double GetGeodeticAltitude ( void  ) const
inline

Definition at line 455 of file FGPropagate.h.

455{ return VState.vLocation.GetGeodAltitude(); }
double GetGeodAltitude(void) const
Gets the geodetic altitude in feet.
Definition FGLocation.h:279

◆ GetGeodeticAltitudeKm()

double GetGeodeticAltitudeKm ( void  ) const
inline

Definition at line 456 of file FGPropagate.h.

456{ return VState.vLocation.GetGeodAltitude()*0.0003048; }

◆ GetGeodLatitudeDeg()

double GetGeodLatitudeDeg ( void  ) const
inline

Definition at line 453 of file FGPropagate.h.

453{ return VState.vLocation.GetGeodLatitudeDeg(); }

◆ GetGeodLatitudeRad()

double GetGeodLatitudeRad ( void  ) const
inline

Definition at line 452 of file FGPropagate.h.

452{ return VState.vLocation.GetGeodLatitudeRad(); }
double GetGeodLatitudeRad(void) const
Get the GEODETIC latitude in radians.
Definition FGLocation.h:258

◆ Gethdot()

double Gethdot ( void  ) const
inline

Returns the current altitude rate.

Returns the current altitude rate (rate of climb). units ft/sec

Returns
The current rate of change in altitude.

Definition at line 418 of file FGPropagate.h.

418{ return -vVel(eDown); }

◆ GetInertialPosition() [1/2]

double GetInertialPosition ( int  i) const
inline

Definition at line 314 of file FGPropagate.h.

314{ return VState.vInertialPosition(i); }

◆ GetInertialPosition() [2/2]

const FGColumnVector3 & GetInertialPosition ( void  ) const
inline

Retrieves the inertial position vector.

Definition at line 313 of file FGPropagate.h.

313{ return VState.vInertialPosition; }

◆ GetInertialVelocity() [1/2]

double GetInertialVelocity ( int  i) const
inline

Definition at line 309 of file FGPropagate.h.

309{ return VState.vInertialVelocity(i); }

◆ GetInertialVelocity() [2/2]

const FGColumnVector3 & GetInertialVelocity ( void  ) const
inline

Retrieves the inertial velocity vector in ft/sec.

Definition at line 308 of file FGPropagate.h.

308{ return VState.vInertialVelocity; }

◆ GetInertialVelocityMagnitude()

double GetInertialVelocityMagnitude ( void  ) const
inline

Retrieves the total inertial velocity in ft/sec.

Definition at line 300 of file FGPropagate.h.

300{ return VState.vInertialVelocity.Magnitude(); }
double Magnitude(void) const
Length of the vector.

◆ GetLatitude()

double GetLatitude ( void  ) const
inline

Definition at line 450 of file FGPropagate.h.

450{ return VState.vLocation.GetLatitude(); }
double GetLatitude() const
Get the GEOCENTRIC latitude in radians.
Definition FGLocation.h:252

◆ GetLatitudeDeg()

double GetLatitudeDeg ( void  ) const
inline

Definition at line 459 of file FGPropagate.h.

459{ return VState.vLocation.GetLatitudeDeg(); }
double GetLatitudeDeg() const
Get the GEOCENTRIC latitude in degrees.
Definition FGLocation.h:267

◆ GetLocalTerrainRadius()

double GetLocalTerrainRadius ( void  ) const

Returns the "constant" LocalTerrainRadius.

The LocalTerrainRadius parameter is set by the calling application or set to sea level + terrain elevation if JSBSim is running in standalone mode. units feet

Returns
distance of the local terrain from the center of the earth.

Definition at line 620 of file FGPropagate.cpp.

621{
622 FGLocation contact;
623 FGColumnVector3 vDummy;
624 Inertial->GetContactPoint(VState.vLocation, contact, vDummy, vDummy, vDummy);
625 return contact.GetRadius();
626}
+ Here is the call graph for this function:

◆ GetLocation() [1/2]

double GetLocation ( int  i) const
inline

Definition at line 461 of file FGPropagate.h.

461{ return VState.vLocation(i); }

◆ GetLocation() [2/2]

const FGLocation & GetLocation ( void  ) const
inline

Definition at line 460 of file FGPropagate.h.

460{ return VState.vLocation; }

◆ GetLongitude()

double GetLongitude ( void  ) const
inline

Definition at line 449 of file FGPropagate.h.

449{ return VState.vLocation.GetLongitude(); }
double GetLongitude() const
Get the longitude.
Definition FGLocation.h:234

◆ GetLongitudeDeg()

double GetLongitudeDeg ( void  ) const
inline

Definition at line 458 of file FGPropagate.h.

458{ return VState.vLocation.GetLongitudeDeg(); }

◆ GetNEDVelocityMagnitude()

double GetNEDVelocityMagnitude ( void  ) const
inline

Retrieves the total local NED velocity in ft/sec.

Definition at line 304 of file FGPropagate.h.

304{ return VState.vUVW.Magnitude(); }

◆ GetPQR() [1/2]

double GetPQR ( int  axis) const
inline

Retrieves a body frame angular velocity component relative to the ECEF frame.

Retrieves a body frame angular velocity component. The angular velocity returned is extracted from the vPQR vector (an FGColumnVector). The vector for the angular velocity in Body frame is organized (P, Q, R). The vector is 1-based. In other words, GetPQR(1) returns P (roll rate). Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the angular velocity returned by this call are, eP=1, eQ=2, eR=3. units rad/sec

Parameters
axisthe index of the angular velocity component desired (1-based).
Returns
The body frame angular velocity component.

Definition at line 350 of file FGPropagate.h.

350{return VState.vPQR(axis);}

◆ GetPQR() [2/2]

const FGColumnVector3 & GetPQR ( void  ) const
inline

Retrieves the body angular rates vector, relative to the ECEF frame.

Retrieves the body angular rates (p, q, r), which are calculated by integration of the angular acceleration. The vector returned is represented by an FGColumnVector3 reference. The vector for the angular velocity in Body frame is organized (P, Q, R). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vPQR(1) is P. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eP=1, eQ=2, eR=3. units rad/sec

Returns
The body frame angular rates in rad/sec.

Definition at line 211 of file FGPropagate.h.

211{return VState.vPQR;}

◆ GetPQRi() [1/2]

double GetPQRi ( int  axis) const
inline

Retrieves a body frame angular velocity component relative to the ECI (inertial) frame.

Retrieves a body frame angular velocity component. The angular velocity returned is extracted from the vPQR vector (an FGColumnVector). The vector for the angular velocity in Body frame is organized (P, Q, R). The vector is 1-based. In other words, GetPQR(1) returns P (roll rate). Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the angular velocity returned by this call are, eP=1, eQ=2, eR=3. units rad/sec

Parameters
axisthe index of the angular velocity component desired (1-based).
Returns
The body frame angular velocity component.

Definition at line 363 of file FGPropagate.h.

363{return VState.vPQRi(axis);}

◆ GetPQRi() [2/2]

const FGColumnVector3 & GetPQRi ( void  ) const
inline

Retrieves the body angular rates vector, relative to the ECI (inertial) frame.

Retrieves the body angular rates (p, q, r), which are calculated by integration of the angular acceleration. The vector returned is represented by an FGColumnVector reference. The vector for the angular velocity in Body frame is organized (P, Q, R). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vPQR(1) is P. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eP=1, eQ=2, eR=3. units rad/sec

Returns
The body frame inertial angular rates in rad/sec.

Definition at line 225 of file FGPropagate.h.

225{return VState.vPQRi;}

◆ GetQuaternion()

const FGQuaternion GetQuaternion ( void  ) const
inline

Returns the quaternion that goes from Local to Body.

Definition at line 539 of file FGPropagate.h.

539{ return VState.qAttitudeLocal; }

◆ GetQuaterniondot()

const FGQuaternion & GetQuaterniondot ( void  ) const
inline

Retrieves the time derivative of the body orientation quaternion.

Retrieves the time derivative of the body orientation quaternion based on the rate of change of the orientation between the body and the ECI frame. The quaternion returned is represented by an FGQuaternion reference. The quaternion is 1-based, so that the first element can be retrieved using the "()" operator. units rad/sec^2

Returns
The time derivative of the body orientation quaternion.

Definition at line 236 of file FGPropagate.h.

236{return VState.vQtrndot;}

◆ GetQuaternionECEF()

const FGQuaternion GetQuaternionECEF ( void  ) const
inline

Returns the quaternion that goes from ECEF to Body.

Definition at line 545 of file FGPropagate.h.

545{ return Qec2b; }

◆ GetQuaternionECI()

const FGQuaternion GetQuaternionECI ( void  ) const
inline

Returns the quaternion that goes from ECI to Body.

Definition at line 542 of file FGPropagate.h.

542{ return VState.qAttitudeECI; }

◆ GetRadius()

double GetRadius ( void  ) const
inline

Definition at line 445 of file FGPropagate.h.

445 {
446 if (VState.vLocation.GetRadius() == 0) return 1.0;
447 else return VState.vLocation.GetRadius();
448 }

◆ GetSinEuler()

double GetSinEuler ( int  idx) const
inline

Retrieves the sine of a vehicle Euler angle component.

Retrieves the sine of an Euler angle (Phi, Theta, or Psi) from the quaternion that stores the vehicle orientation relative to the Local frame. The order of rotations used is Yaw-Pitch-Roll. The Euler angle with subscript (1) is Phi. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the Euler angle referred to in this call are, ePhi=1, eTht=2, ePsi=3 (e.g. GetSinEuler(eTht) returns sin(theta)). units none

Returns
The sine of an Euler angle.

Definition at line 411 of file FGPropagate.h.

411{ return VState.qAttitudeLocal.GetSinEuler(idx); }
double GetSinEuler(int i) const
Retrieves sine of the given euler angle.

◆ GetTb2ec()

const FGMatrix33 & GetTb2ec ( void  ) const
inline

Retrieves the body-to-ECEF transformation matrix.

Returns
a reference to the body-to-ECEF matrix.

Definition at line 481 of file FGPropagate.h.

481{ return Tb2ec; }

◆ GetTb2i()

const FGMatrix33 & GetTb2i ( void  ) const
inline

Retrieves the body-to-ECI transformation matrix.

Returns
a reference to the body-to-ECI matrix.

Definition at line 489 of file FGPropagate.h.

489{ return Tb2i; }

◆ GetTb2l()

const FGMatrix33 & GetTb2l ( void  ) const
inline

Retrieves the body-to-local transformation matrix.

The quaternion class, being the means by which the orientation of the vehicle is stored, manages the body-to-local transformation matrix.

Returns
a reference to the body-to-local matrix.

Definition at line 473 of file FGPropagate.h.

473{ return Tb2l; }

◆ GetTec2b()

const FGMatrix33 & GetTec2b ( void  ) const
inline

Retrieves the ECEF-to-body transformation matrix.

Returns
a reference to the ECEF-to-body transformation matrix.

Definition at line 477 of file FGPropagate.h.

477{ return Tec2b; }

◆ GetTec2i()

const FGMatrix33 & GetTec2i ( void  ) const
inline

Retrieves the ECEF-to-ECI transformation matrix.

Returns
a reference to the ECEF-to-ECI transformation matrix.
See also
SetEarthPositionAngle

Definition at line 494 of file FGPropagate.h.

494{ return Tec2i; }

◆ GetTec2l()

const FGMatrix33 & GetTec2l ( void  ) const
inline

Retrieves the ECEF-to-local transformation matrix.

Retrieves the ECEF-to-local transformation matrix. Note that the so-called local from is also know as the NED frame (for North, East, Down).

Returns
a reference to the ECEF-to-local matrix.

Definition at line 505 of file FGPropagate.h.

505{ return Tec2l; }

◆ GetTerrainAngularVelocity()

const FGColumnVector3 & GetTerrainAngularVelocity ( void  ) const
inline

Definition at line 439 of file FGPropagate.h.

439{ return LocalTerrainAngularVelocity; }

◆ GetTerrainElevation()

double GetTerrainElevation ( void  ) const

Definition at line 602 of file FGPropagate.cpp.

603{
604 FGColumnVector3 vDummy;
605 FGLocation contact;
606 contact.SetEllipse(in.SemiMajor, in.SemiMinor);
607 Inertial->GetContactPoint(VState.vLocation, contact, vDummy, vDummy, vDummy);
608 return contact.GetGeodAltitude();
609}

◆ GetTerrainVelocity()

const FGColumnVector3 & GetTerrainVelocity ( void  ) const
inline

Definition at line 438 of file FGPropagate.h.

438{ return LocalTerrainVelocity; }

◆ GetTi2b()

const FGMatrix33 & GetTi2b ( void  ) const
inline

Retrieves the ECI-to-body transformation matrix.

Returns
a reference to the ECI-to-body transformation matrix.

Definition at line 485 of file FGPropagate.h.

485{ return Ti2b; }

◆ GetTi2ec()

const FGMatrix33 & GetTi2ec ( void  ) const
inline

Retrieves the ECI-to-ECEF transformation matrix.

Returns
a reference to the ECI-to-ECEF matrix.
See also
SetEarthPositionAngle

Definition at line 499 of file FGPropagate.h.

499{ return Ti2ec; }

◆ GetTi2l()

const FGMatrix33 & GetTi2l ( void  ) const
inline

Retrieves the inertial-to-local transformation matrix.

Returns
a reference to the inertial-to-local matrix.
See also
SetEarthPositionAngle

Definition at line 521 of file FGPropagate.h.

521{ return Ti2l; }

◆ GetTl2b()

const FGMatrix33 & GetTl2b ( void  ) const
inline

Retrieves the local-to-body transformation matrix.

The quaternion class, being the means by which the orientation of the vehicle is stored, manages the local-to-body transformation matrix.

Returns
a reference to the local-to-body transformation matrix.

Definition at line 467 of file FGPropagate.h.

467{ return Tl2b; }

◆ GetTl2ec()

const FGMatrix33 & GetTl2ec ( void  ) const
inline

Retrieves the local-to-ECEF transformation matrix.

Retrieves the local-to-ECEF transformation matrix. Note that the so-called local from is also know as the NED frame (for North, East, Down).

Returns
a reference to the local-to-ECEF matrix.

Definition at line 511 of file FGPropagate.h.

511{ return Tl2ec; }

◆ GetTl2i()

const FGMatrix33 & GetTl2i ( void  ) const
inline

Retrieves the local-to-inertial transformation matrix.

Returns
a reference to the local-to-inertial transformation matrix.
See also
SetEarthPositionAngle

Definition at line 516 of file FGPropagate.h.

516{ return Tl2i; }

◆ GetUVW() [1/2]

double GetUVW ( int  idx) const
inline

Retrieves a body frame velocity component.

Retrieves a body frame velocity component. The velocity returned is extracted from the vUVW vector (an FGColumnVector). The vector for the velocity in Body frame is organized (Vx, Vy, Vz). The vector is 1-based. In other words, GetUVW(1) returns Vx. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the velocity returned by this call are, eX=1, eY=2, eZ=3. units ft/sec

Parameters
idxthe index of the velocity component desired (1-based).
Returns
The body frame velocity component.

Definition at line 283 of file FGPropagate.h.

283{ return VState.vUVW(idx); }

◆ GetUVW() [2/2]

const FGColumnVector3 & GetUVW ( void  ) const
inline

Retrieves the body frame vehicle velocity vector.

The vector returned is represented by an FGColumnVector3 reference. The vector for the velocity in Body frame is organized (Vx, Vy, Vz). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vUVW(1) is Vx. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eX=1, eY=2, eZ=3. units ft/sec

Returns
The body frame vehicle velocity vector in ft/sec.

Definition at line 197 of file FGPropagate.h.

197{ return VState.vUVW; }

◆ GetVel() [1/2]

double GetVel ( int  idx) const
inline

Retrieves a Local frame velocity component.

Retrieves a Local frame velocity component. The velocity returned is extracted from the vVel vector (an FGColumnVector). The vector for the velocity in Local frame is organized (Vnorth, Veast, Vdown). The vector is 1-based. In other words, GetVel(1) returns Vnorth. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the velocity returned by this call are, eNorth=1, eEast=2, eDown=3. units ft/sec

Parameters
idxthe index of the velocity component desired (1-based).
Returns
The body frame velocity component.

Definition at line 296 of file FGPropagate.h.

296{ return vVel(idx); }

◆ GetVel() [2/2]

const FGColumnVector3 & GetVel ( void  ) const
inline

Retrieves the velocity vector.

The vector returned is represented by an FGColumnVector reference. The vector for the velocity in Local frame is organized (Vnorth, Veast, Vdown). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vVel(1) is Vnorth. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eNorth=1, eEast=2, eDown=3. units ft/sec

Returns
The vehicle velocity vector with respect to the Earth centered frame, expressed in Local horizontal frame.

Definition at line 185 of file FGPropagate.h.

185{ return vVel; }

◆ GetVState()

const VehicleState & GetVState ( void  ) const
inline

Definition at line 523 of file FGPropagate.h.

523{ return VState; }

◆ InitializeDerivatives()

void InitializeDerivatives ( )

Definition at line 190 of file FGPropagate.cpp.

191{
192 VState.dqPQRidot.assign(5, in.vPQRidot);
193 VState.dqUVWidot.assign(5, in.vUVWidot);
194 VState.dqInertialVelocity.assign(5, VState.vInertialVelocity);
195 VState.dqQtrndot.assign(5, VState.vQtrndot);
196}

◆ InitModel()

bool InitModel ( void  )
virtual

Initializes the FGPropagate class after instantiation and prior to first execution.

The base class FGModel::InitModel is called first, initializing pointers to the other FGModel objects (and others).

Reimplemented from FGModel.

Definition at line 118 of file FGPropagate.cpp.

119{
120 if (!FGModel::InitModel()) return false;
121
122 // For initialization ONLY:
123 VState.vLocation.SetEllipse(in.SemiMajor, in.SemiMinor);
124 Inertial->SetAltitudeAGL(VState.vLocation, 4.0);
125
126 VState.dqPQRidot.resize(5, FGColumnVector3(0.0,0.0,0.0));
127 VState.dqUVWidot.resize(5, FGColumnVector3(0.0,0.0,0.0));
128 VState.dqInertialVelocity.resize(5, FGColumnVector3(0.0,0.0,0.0));
129 VState.dqQtrndot.resize(5, FGColumnVector3(0.0,0.0,0.0));
130
131 integrator_rotational_rate = eRectEuler;
132 integrator_translational_rate = eAdamsBashforth2;
133 integrator_rotational_position = eRectEuler;
134 integrator_translational_position = eAdamsBashforth3;
135
136 epa = 0.0;
137
138 return true;
139}
void SetEllipse(double semimajor, double semiminor)
Sets the semimajor and semiminor axis lengths for this planet.
+ Here is the call graph for this function:

◆ NudgeBodyLocation()

void NudgeBodyLocation ( const FGColumnVector3 deltaLoc)
inline

Definition at line 597 of file FGPropagate.h.

597 {
598 VState.vInertialPosition -= Tb2i*deltaLoc;
599 VState.vLocation -= Tb2ec*deltaLoc;
600 }

◆ RecomputeLocalTerrainVelocity()

void RecomputeLocalTerrainVelocity ( )

Definition at line 592 of file FGPropagate.cpp.

593{
594 FGLocation contact;
595 FGColumnVector3 normal;
596 Inertial->GetContactPoint(VState.vLocation, contact, normal,
597 LocalTerrainVelocity, LocalTerrainAngularVelocity);
598}

◆ Run()

bool Run ( bool  Holding)
virtual

Runs the state propagation model; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.

Parameters
Holdingif true, the executive has been directed to hold the sim from advancing time. Some models may ignore this flag, such as the Input model, which may need to be active to listen on a socket for the "Resume" command to be given.
Returns
false if no error

Reimplemented from FGModel.

Definition at line 218 of file FGPropagate.cpp.

219{
220 if (FGModel::Run(Holding)) return true; // Fast return if we have nothing to do ...
221 if (Holding) return false;
222
223 double dt = in.DeltaT * rate; // The 'stepsize'
224
225 // Propagate rotational / translational velocity, angular /translational position, respectively.
226
227 if (!FDMExec->IntegrationSuspended()) {
228 Integrate(VState.qAttitudeECI, VState.vQtrndot, VState.dqQtrndot, dt, integrator_rotational_position);
229 Integrate(VState.vPQRi, in.vPQRidot, VState.dqPQRidot, dt, integrator_rotational_rate);
230 Integrate(VState.vInertialPosition, VState.vInertialVelocity, VState.dqInertialVelocity, dt, integrator_translational_position);
231 Integrate(VState.vInertialVelocity, in.vUVWidot, VState.dqUVWidot, dt, integrator_translational_rate);
232 }
233
234 // CAUTION : the order of the operations below is very important to get
235 // transformation matrices that are consistent with the new state of the
236 // vehicle
237
238 // 1. Update the Earth position angle (EPA)
239 epa += in.vOmegaPlanet(eZ)*dt;
240
241 // 2. Update the Ti2ec and Tec2i transforms from the updated EPA
242 double cos_epa = cos(epa);
243 double sin_epa = sin(epa);
244 Ti2ec = { cos_epa, sin_epa, 0.0,
245 -sin_epa, cos_epa, 0.0,
246 0.0, 0.0, 1.0 };
247 Tec2i = Ti2ec.Transposed(); // ECEF to ECI frame transform
248
249 // 3. Update the location from the updated Ti2ec and inertial position
250 VState.vLocation = Ti2ec*VState.vInertialPosition;
251
252 // 4. Update the other "Location-based" transformation matrices from the
253 // updated vLocation vector.
254 UpdateLocationMatrices();
255
256 // 5. Update the "Orientation-based" transformation matrices from the updated
257 // orientation quaternion and vLocation vector.
258 UpdateBodyMatrices();
259
260 // Translational position derivative (velocities are integrated in the
261 // inertial frame)
262 CalculateUVW();
263
264 // Set auxilliary state variables
265 RecomputeLocalTerrainVelocity();
266
267 VState.vPQR = VState.vPQRi - Ti2b * in.vOmegaPlanet;
268
269 // Angular orientation derivative
270 CalculateQuatdot();
271
272 VState.qAttitudeLocal = Tl2b.GetQuaternion();
273
274 // Compute vehicle velocity wrt ECEF frame, expressed in Local horizontal
275 // frame.
276 vVel = Tb2l * VState.vUVW;
277
278 // Compute orbital parameters in the inertial frame
279 ComputeOrbitalParameters();
280
281 Debug(2);
282 return false;
283}
bool IntegrationSuspended(void) const
Returns the simulation suspension state.
Definition FGFDMExec.h:562
FGMatrix33 Transposed(void) const
Transposed matrix.
Definition FGMatrix33.h:221
FGQuaternion GetQuaternion(void) const
Returns the quaternion associated with this direction cosine (rotation) matrix.
virtual bool Run(bool Holding)
Runs the model; called by the Executive.
Definition FGModel.cpp:89
+ Here is the call graph for this function:

◆ SetAltitudeASL()

void SetAltitudeASL ( double  altASL)

Definition at line 583 of file FGPropagate.cpp.

584{
585 double slr = VState.vLocation.GetSeaLevelRadius();
586 VState.vLocation.SetRadius(slr + altASL);
587 UpdateVehicleState();
588}
void SetRadius(double radius)
Set the distance from the center of the earth.

◆ SetAltitudeASLmeters()

void SetAltitudeASLmeters ( double  altASL)
inline

Definition at line 578 of file FGPropagate.h.

578{ SetAltitudeASL(altASL/fttom); }

◆ SetDistanceAGL()

void SetDistanceAGL ( double  tt)

Definition at line 644 of file FGPropagate.cpp.

645{
646 Inertial->SetAltitudeAGL(VState.vLocation, tt);
647 UpdateVehicleState();
648}

◆ SetDistanceAGLKm()

void SetDistanceAGLKm ( double  tt)

Definition at line 652 of file FGPropagate.cpp.

653{
654 SetDistanceAGL(tt*3280.8399);
655}

◆ SetEarthPositionAngle()

void SetEarthPositionAngle ( double  EPA)
inline

Sets the Earth position angle.

This is the relative angle around the Z axis of the ECEF frame with respect to the inertial frame.

Parameters
EPAEarth position angle in radians.

Definition at line 532 of file FGPropagate.h.

532{epa = EPA;}

◆ SetHoldDown()

void SetHoldDown ( bool  hd)

Sets the property forces/hold-down.

This allows to do hard 'hold-down' such as for rockets on a launch pad with engines ignited.

Parameters
hdenables the 'hold-down' function if non-zero

Definition at line 287 of file FGPropagate.cpp.

288{
289 if (hd) {
290 VState.vUVW.InitMatrix();
291 CalculateInertialVelocity();
292 VState.vPQR.InitMatrix();
293 VState.vPQRi = Ti2b * in.vOmegaPlanet;
294 CalculateQuatdot();
295 InitializeDerivatives();
296 }
297}
+ Here is the caller graph for this function:

◆ SetInertialOrientation()

void SetInertialOrientation ( const FGQuaternion Qi)

Definition at line 549 of file FGPropagate.cpp.

550{
551 VState.qAttitudeECI = Qi;
552 VState.qAttitudeECI.Normalize();
553 UpdateBodyMatrices();
554 VState.qAttitudeLocal = Tl2b.GetQuaternion();
555 CalculateQuatdot();
556}
void Normalize(void)
Normalize.

◆ SetInertialRates()

void SetInertialRates ( const FGColumnVector3 vRates)

Definition at line 568 of file FGPropagate.cpp.

568 {
569 VState.vPQRi = Ti2b * vRates;
570 VState.vPQR = VState.vPQRi - Ti2b * in.vOmegaPlanet;
571 CalculateQuatdot();
572}

◆ SetInertialVelocity()

void SetInertialVelocity ( const FGColumnVector3 Vi)

Definition at line 560 of file FGPropagate.cpp.

560 {
561 VState.vInertialVelocity = Vi;
562 CalculateUVW();
563 vVel = Tb2l * VState.vUVW;
564}

◆ SetInitialState()

void SetInitialState ( const FGInitialCondition FGIC)

Definition at line 143 of file FGPropagate.cpp.

144{
145 // Initialize the State Vector elements and the transformation matrices
146
147 // Set the position lat/lon/radius
148 VState.vLocation = FGIC->GetPosition();
149
150 epa = FGIC->GetEarthPositionAngleIC();
151 Ti2ec = { cos(epa), sin(epa), 0.0,
152 -sin(epa), cos(epa), 0.0,
153 0.0, 0.0, 1.0 };
154 Tec2i = Ti2ec.Transposed(); // ECEF to ECI frame transform
155
156 VState.vInertialPosition = Tec2i * VState.vLocation;
157
158 UpdateLocationMatrices();
159
160 // Set the orientation from the euler angles (is normalized within the
161 // constructor). The Euler angles represent the orientation of the body
162 // frame relative to the local frame.
163 VState.qAttitudeLocal = FGIC->GetOrientation();
164
165 VState.qAttitudeECI = Ti2l.GetQuaternion()*VState.qAttitudeLocal;
166 UpdateBodyMatrices();
167
168 // Set the velocities in the instantaneus body frame
169 VState.vUVW = FGIC->GetUVWFpsIC();
170
171 // Compute the local frame ECEF velocity
172 vVel = Tb2l * VState.vUVW;
173
174 // Compute local terrain velocity
175 RecomputeLocalTerrainVelocity();
176
177 // Set the angular velocities of the body frame relative to the ECEF frame,
178 // expressed in the body frame.
179 VState.vPQR = FGIC->GetPQRRadpsIC();
180
181 VState.vPQRi = VState.vPQR + Ti2b * in.vOmegaPlanet;
182
183 CalculateInertialVelocity(); // Translational position derivative
184 CalculateQuatdot(); // Angular orientation derivative
185}

◆ SetLatitude()

void SetLatitude ( double  lat)
inline

Definition at line 565 of file FGPropagate.h.

566 {
567 VState.vLocation.SetLatitude(lat);
568 UpdateVehicleState();
569 }
void SetLatitude(double latitude)
Set the GEOCENTRIC latitude.

◆ SetLatitudeDeg()

void SetLatitudeDeg ( double  lat)
inline

Definition at line 570 of file FGPropagate.h.

570{ SetLatitude(lat*degtorad); }

◆ SetLocation() [1/2]

void SetLocation ( const FGColumnVector3 lv)
inline

Definition at line 586 of file FGPropagate.h.

587 {
588 FGLocation l = FGLocation(lv);
589 SetLocation(l);
590 }

◆ SetLocation() [2/2]

void SetLocation ( const FGLocation l)

Definition at line 688 of file FGPropagate.cpp.

689{
690 VState.vLocation = l;
691 UpdateVehicleState();
692}

◆ SetLongitude()

void SetLongitude ( double  lon)
inline

Definition at line 559 of file FGPropagate.h.

560 {
561 VState.vLocation.SetLongitude(lon);
562 UpdateVehicleState();
563 }
void SetLongitude(double longitude)
Set the longitude.

◆ SetLongitudeDeg()

void SetLongitudeDeg ( double  lon)
inline

Definition at line 564 of file FGPropagate.h.

564{ SetLongitude(lon*degtorad); }

◆ SetPosition()

void SetPosition ( const double  Lon,
const double  Lat,
const double  Radius 
)
inline

Definition at line 591 of file FGPropagate.h.

592 {
593 FGLocation l = FGLocation(Lon, Lat, Radius);
594 SetLocation(l);
595 }

◆ SetPQR()

void SetPQR ( unsigned int  i,
double  val 
)
inline

Definition at line 547 of file FGPropagate.h.

547 {
548 VState.vPQR(i) = val;
549 VState.vPQRi = VState.vPQR + Ti2b * in.vOmegaPlanet;
550 }

◆ SetRadius()

void SetRadius ( double  r)
inline

Definition at line 571 of file FGPropagate.h.

572 {
573 VState.vLocation.SetRadius(r);
574 VState.vInertialPosition = Tec2i * VState.vLocation;
575 }

◆ SetTerrainElevation()

void SetTerrainElevation ( double  tt)

Definition at line 613 of file FGPropagate.cpp.

614{
615 Inertial->SetTerrainElevation(terrainElev);
616}

◆ SetUVW()

void SetUVW ( unsigned int  i,
double  val 
)
inline

Definition at line 552 of file FGPropagate.h.

552 {
553 VState.vUVW(i) = val;
554 CalculateInertialVelocity();
555 }

◆ SetVState()

void SetVState ( const VehicleState vstate)

Definition at line 659 of file FGPropagate.cpp.

660{
661 //ToDo: Shouldn't all of these be set from the vstate vector passed in?
662 VState.vLocation = vstate.vLocation;
663 UpdateLocationMatrices();
664 SetInertialOrientation(vstate.qAttitudeECI);
665 RecomputeLocalTerrainVelocity();
666 VState.vUVW = vstate.vUVW;
667 vVel = Tb2l * VState.vUVW;
668 VState.vPQR = vstate.vPQR;
669 VState.vPQRi = VState.vPQR + Ti2b * in.vOmegaPlanet;
670 VState.vInertialPosition = vstate.vInertialPosition;
671 CalculateQuatdot();
672}

The documentation for this class was generated from the following files: